Distribution of plasma membrane Ca2+ pump activity in normal human red blood cells

Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 4206-4213 ◽  
Author(s):  
Virgilio L. Lew ◽  
Nuala Daw ◽  
Deisy Perdomo ◽  
Zipora Etzion ◽  
Robert M. Bookchin ◽  
...  

Abstract The plasma membrane calcium pump (PMCA) is the only active Ca2+ transporter in human red blood cells (RBCs). Previous measurements of maximal Ca2+ extrusion rates (Vmax) reported only mean values in the RBC population. Despite early evidence for differences in Ca2+ extrusion capacity among RBCs, the precise Vmax distribution remained unknown. It was important to characterize this distribution to assess the range and modality (uni- or multimodal) of PMCA Vmax variation and the likelihood of RBCs with elevated [Ca2+]i in the circulation participating in physiologic and pathologic processes. We report here the application of a new method to investigate the detailed distribution of PMCA Vmax activity in RBCs. The migrating profile of osmotic lysis curves was used to identify and quantify the fraction of cells that extrude a uniform Ca2+ load at different rates. The results revealed that RBCs from single donors have large variations in PMCA activity that follow a unimodal, broad distribution pattern consistently skewed toward higher Vmax values, suggesting an excess of cells with Vmax higher than the mean value. The method applied may provide a way of evaluating whether the observed variation in PMCA Vmax is related to cell age. (Blood. 2003;102:4206-4213)

1976 ◽  
Vol 128 (2) ◽  
pp. 184-187 ◽  
Author(s):  
Helen L. White ◽  
Malcolm N. McLeod ◽  
Jonathan R. T. Davidson

SummaryCatechol O-methyltransferase of lysed human red blood cells was assayed under optimal conditions, using saturating concentrations of the substrates, S-adenosyl-L-methionine and 3,4-dihydroxybenzoic acid. The mean enzyme activity found in 24 normal subjects was 29.2 nmol/hr/ml RBC. The mean activity in blood of 33 female unipolar depressives was not significantly different from normal. However, higher enzyme activities were observed in the blood of 11 schizophrenic patients (38.9 nmol/hr/ml RBC). Partially purified enzyme preparations from blood of normal and schizophrenic individuals were indistinguishable with respect to substrate specificities, isoelectric pH values, and ratios of the two O-methylated products. Therefore it is unlikely that any defect in O-methylation which may occur in schizophrenia can be attributed to a change in the intrinsic properties of erythrocyte catechol O-methyltransferase.


2007 ◽  
Vol 41 (5) ◽  
pp. 536-545 ◽  
Author(s):  
Irina M. Shcherbachenko ◽  
Irina L. Lisovskaya ◽  
Vladimir P. Tikhonov

Nature ◽  
1962 ◽  
Vol 195 (4840) ◽  
pp. 500-501 ◽  
Author(s):  
ROBERT H. HERMAN ◽  
JESSE BERKOWITZ ◽  
LLOYD E. CLAYTON ◽  
JACQUES L. SHERMAN

2012 ◽  
Vol 88 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Robert S. Franco ◽  
M. Estela Puchulu-Campanella ◽  
Latorya A. Barber ◽  
Mary B. Palascak ◽  
Clinton H. Joiner ◽  
...  

Enzyme ◽  
1988 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
J. L. Vives Carrons ◽  
M. A. Pujades ◽  
D. Colomer

1983 ◽  
Vol 31 (9) ◽  
pp. 1109-1116 ◽  
Author(s):  
M Borgers ◽  
F J Thone ◽  
B J Xhonneux ◽  
F F De Clerck

The distribution of calcium is demonstrated in human red blood cells (RBC) with a combined phosphate-pyroantimonate technique (PPA). Freshly collected blood and tissue biopsies were initially fixed in potassium phosphate-glutaraldehyde and the complexed calcium was subsequently visualized on Vibratome sections with potassium pyroantimonate. The majority of cells, both in isolated as well as "in situ" preparations, show a fine granular precipitate located at the inner leaflet of the plasma membrane. A minority of cells lack these membrane-associated deposits, exhibiting instead a random distribution of very fine precipitate in their cytoplasm. Capillary endothelial cells and pericytes are devoid of plasma membrane-bound precipitate. When irreversible crenation of RBC is induced by exposure to ionophore A 23187 and calcium, the sphero-echinocytes loose their membrane-bound precipitate, whereas the cells that retain their discocyte shape demonstrate the usual pattern of membrane-bound deposits. Contrarily, cells showing reversible shape changes induced by either A 23187-Ca2+ challenge, by adenosine triphosphate depletion during aging, or contact with lysolecithin, retain or regain the membrane-bound calcium. This cytochemical demonstrable calcium at the inner leaflet of the plasma membrane is probably bound to acidic phospholipids, since it is readily extractable with the nonionic detergent Triton X-100.


2016 ◽  
Vol 38 (4) ◽  
pp. 1376-1390 ◽  
Author(s):  
Mauro C. Wesseling ◽  
Lisa Wagner-Britz ◽  
Henri Huppert ◽  
Benjamin Hanf ◽  
Laura Hertz ◽  
...  

Background/Aims: The exposure of phosphatidylserine (PS) on the outer membrane leaflet of red blood cells (RBCs) serves as a signal for suicidal erythrocyte death or eryptosis, which may be of importance for cell clearance from blood circulation. PS externalisation is realised by the scramblase activated by an increase of intracellular Ca2+ content. It has been described in literature that RBCs show an increased intracellular Ca2+ content as well as PS exposure when becoming aged up to 120 days (which is their life span). However, these investigations were carried out after incubation of the RBCs for 48 h. The aim of this study was to investigate this effect after short-time incubation using a variety of stimulating substances for Ca2+ uptake and PS exposure. Methods: We separated RBCs by age in five different fractions by centrifugation using Percoll density gradient. The intracellular Ca2+ content and the PS exposure of RBCs with different age has been investigated after treatment with lysophosphatidic acid (LPA) as well as after activation of protein kinase C (PKC) using phorbol-12 myristate-13 acetate (PMA). For positive control RBCs were treated with 4-bromo-A23187. Measurement techniques included flow cytometry and live cell imaging (fluorescence microscopy). Results: The percentage of RBCs showing increased Ca2+ content as well as the PS exposure did not change significantly in dependence on cell age after short-time incubation in control experiments (without stimulating substances) or using LPA or PMA. However, we confirm findings reported that Ca2+ content and the PS exposure of RBCs increased after 48 h incubation. Conclusion: No significant differences of intracellular Ca2+ content and PS exposure can be seen for RBCs of different age in resting state or after stimulation of Ca2+ uptake at short-time incubation.


Sign in / Sign up

Export Citation Format

Share Document