Synergistic effects on erythropoiesis, thrombopoiesis, and stem cell competitiveness in mice deficient in thrombopoietin and steel factor receptors

Blood ◽  
2004 ◽  
Vol 104 (5) ◽  
pp. 1306-1313 ◽  
Author(s):  
Jennifer Antonchuk ◽  
Craig D. Hyland ◽  
Douglas J. Hilton ◽  
Warren S. Alexander

Abstract The degree of redundancy between thrombopoietin (Tpo) and steel factor (SF) cytokine pathways in the regulation of hematopoiesis was investigated by generating mice lacking both c-Mpl and fully functional c-Kit receptors. Double-mutant c-Mpl–/–KitWv/Wv mice exhibited reduced viability, making up only 2% of the offspring from c-Mpl–/–KitWv/+ intercrosses. The thrombocytopenia and megakaryocytopenia characteristic of c-Mpl–/– mice was unchanged in c-Mpl–/–KitWv/Wv mice. However, the number of megakaryocytic colony forming units (CFU-Mks) was significantly reduced, particularly in the spleen. While KitWv/Wv mice, but not c-Mpl–/– mice, are anemic, the anemia was more severe in double-mutant c-Mpl–/–KitWv/Wv mice, indicating redundancy between Tpo and SF in erythropoiesis. At the primitive cell level, c-Mpl–/– and KitWv/Wv mice have similar phenotypes, including reduced progenitors, colony forming units–spleen (CFU-Ss), and repopulating activities. All of these parameters were exacerbated in double-mutant mice. c-Mpl–/–KitWv/Wv mice had 8-fold fewer clonogenic progenitor cells and at least 28-fold fewer CFU-Ss. c-Mpl–/– mice also demonstrated a reduced threshold requirement for nonmyeloablative transplant repopulation, a trait previously associated only with KitW mice, and the level of nonmyeloablative engraftment was significantly greater in c-Mpl–/–KitWv/Wv double mutants. Thus, c-Mpl–/–KitWv/Wv mice reveal nonredundant and synergistic effects of Tpo and SF on primitive hematopoietic cells.

Blood ◽  
1978 ◽  
Vol 51 (3) ◽  
pp. 539-547 ◽  
Author(s):  
DH Chui ◽  
SK Liao ◽  
K Walker

Abstract Erythroid progenitor cells in +/+ and Sl/Sld fetal livers manifested as burst-forming units-erythroid (BFU-E) and colony-forming units- erythroid (CFU-E) were assayed in vitro during early development. The proportion of BFU-E was higher as mutant than in normal fetal livers. On the other hand, the proportion of CFU-E was less in the mutant than in the normal. These results suggest that the defect in Sl/Sld fetal hepatic erythropoiesis is expressed at the steps of differentiation that effect the transition from BFU-E to CFU-E.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1204-1204
Author(s):  
Xi Jin ◽  
Tingting Qin ◽  
Nathanael G Bailey ◽  
Meiling Zhao ◽  
Kevin B Yang ◽  
...  

Abstract Activating mutations in RAS and somatic loss-of-function mutations in the ten-eleven translocation 2 (TET2) are frequently detected in hematologic malignancies. Global genomic sequencing revealed the co-occurrence of RAS and TET2 mutations in chronic myelomonocytic leukemias (CMMLs) and acute myeloid leukemias (AMLs), suggesting that the two mutations collaborate to induce malignant transformation. However, how the two mutations interact with each other, and the effects of co-existing RAS and TET2 mutations on hematopoietic stem cell (HSC) function and leukemogenesis, remains unknown. In this study, we generated conditional Mx1-Cre+;NrasLSL-G12D/+;Tet2fl/+mice (double mutant) and activated the expression of mutant Nras and Tet2 in hematopoietic tissues with poly(I:C) injections. Double mutant mice had significantly reduced survival compared to mice expressing only NrasG12D/+ or Tet2+/-(single mutants). Hematopathology and flow-cytometry analyses showed that these mice developed accelerated CMML-like phenotypes with higher myeloid cell infiltrations in the bone marrow and spleen as compared to single mutants. However, no cases of AML occurred. Given that CMML is driven by dys-regulated HSC function, we examined stem cell competitiveness, self-renewal and proliferation in double mutant mice at the pre-leukemic stage. The absolute numbers of HSCs in 10-week old double mutant mice were comparable to that observed in wild type (WT) and single mutant mice. However, double mutant HSCsdisplayed significantly enhanced self-renewal potential in colony forming (CFU) replating assays. In vivo competitive serial transplantation assays using either whole bone marrow cells or 15 purified SLAM (CD150+CD48-Lin-Sca1+cKit+) HSCs showed that while single mutant HSCs have increased competitiveness and self-renewal compared to WT HSCs, double mutants have further enhanced HSC competitiveness and self-renewal in primary and secondary transplant recipients. Furthermore, in vivo BrdU incorporation demonstrated that while Nras mutant HSCs had increased proliferation rate, Tet2 mutation significantly reduced the level of HSC proliferation in double mutants. Consistent with this, in vivo H2B-GFP label-retention assays (Liet. al. Nature 2013) in the Col1A1-H2B-GFP;Rosa26-M2-rtTA transgenic mice revealed significantly higher levels of H2B-GFP in Tet2 mutant HSCs, suggesting that Tet2 haploinsufficiency reduced overall HSC cycling. Overall, these findings suggest that hyperactive Nras signaling and Tet2 haploinsufficiency collaborate to enhance HSC competitiveness through distinct functions: N-RasG12D increases HSC self-renewal, proliferation and differentiation, while Tet2 haploinsufficiency reduces HSC proliferation to maintain HSCs in a more quiescent state. Consistent with this, gene expression profiling with RNA sequencing on purified SLAM HSCs indicated thatN-RasG12D and Tet2haploinsufficiencyinduce different yet complementary cellular programs to collaborate in HSC dys-regulation. To fully understand how N-RasG12D and Tet2dose reduction synergistically modulate HSC properties, we examined HSC response to cytokines important for HSC functions. We found that when HSCs were cultured in the presence of low dose stem cell factor (SCF) and thrombopoietin (TPO), only Nras single mutant and Nras/Tet2 double mutant HSCs expanded, but not WT or Tet2 single mutant HSCs. In the presence of TPO and absence of SCF, HSC expansion was only detected in the double mutants. These results suggest that HSCs harboring single mutation of Nras are hypersensitive to cytokine signaling, yet the addition of Tet2 mutation allows for further cytokine independency. Thus, N-RasG12D and Tet2 dose reduction collaborate to promote cytokine signaling. Together, our data demonstrate that hyperactive Nras and Tet2 haploinsufficiency collaborate to alter global HSC gene expression and sensitivity to stem cell cytokines. These events lead to enhanced HSC competitiveness and self-renewal, thus promoting transition toward advanced myeloid malignancy. This model provides a novel platform to delineate how mutations of signaling molecules and epigenetic modifiers collaborate in leukemogenesis, and may identify opportunities for new therapeutic interventions. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 769-769
Author(s):  
Petra Vlckova ◽  
Libor Stanek ◽  
Pavel Burda ◽  
Karin Vargova ◽  
Filipp Savvulidi ◽  
...  

Abstract Abstract 769 Introduction: Downregulation of tumour suppressor transcription factor PU.1 in haematopoietic stem and progenitor cells represents primary underlying mechanism for the development of acute myeloid leukaemia (AML) in mice with homozygous deletion of the upstream regulatory element (URE) of PU.1 gene. Human AML often display differences in aggressiveness that are associated with mutations of a well known tumour suppressor p53. We produced murine model carrying mutations of p53 and URE that develops highly aggressive AML and focused on molecular mechanisms that are responsible for AML aggressiveness. Mouse models: PU.1ure/ure (Rosenbauer F, et al. 2004) and p53−/− (Jacks T, et al. 1994) mice were used. Conditional deletion of the URE leads to downregulation of PU.1 and is marked by clonal accumulation of myeloid c-Kit+Mac-1low Gr-1low blast cells within bone marrow, spleen, and peripheral blood mirrored by lower numbers of lymphoid and erythroid cells. AML development in PU.1ure/ure mice involves a preleukaemic phase (at 2–3 months) marked by proliferation of myeloid c-Kit+Gr-1+ cells and splenomegaly. Interestingly, p53−/−mice do not develop AML, instead loss of p53 predisposes mice to solid tumours, mostly lymphomas, by 6 months of age. Results: Deletion of TP53 in the PU.1ure/ure mice (PU.1ure/ure p53−/−) results in more aggressive AML with significantly shortened overall survival, prominent hepatosplenomegaly and cachexia (wasting syndrome). Mild differences in cell surface phenotype of bone marrow derived cells were observed between PU.1ure/ure and PU.1ure/ure p53−/− mice by flow cytometry (these included: blasts expansion and lymphopenia). Next, the PU.1 expression was determined in all genotypes at progenitor and stem cell levels. PU.1 mRNA level in more aggressive PU.1ure/ure p53−/− murine AML is decreased in the entire c-Kit+tumour cell population compared to AML in PU.1ure/ure mice including haematopoietic stem and progenitor cells (HSPCs). Correspondingly to RNA level, in the PU.1ure/ure progenitors the PU.1 protein was decreased compared to p53−/− progenitors and is yet further reduced in the PU.1ure/ure p53−/− c-Kit+ Mac1+progenitors. p53−/− progenitors express similar level of PU.1 as wild type progenitors indicating that despite p53 can bind DNA as a transcription factor, it does not regulate PU.1 level directly. In addition to URE deletion we searched for other mechanisms that control PU.1 levels and found that PU.1-inhibiting microRNA miR-155 gene display altered chromatin structure and expression of both pri-miR-155 as well as its spliced mature form in the AML of PU.1ure/ure and (to higher extent in) PU.1ure/ure p53−/− murine progenitors. Upregulation of miR-155 coincides with upregulation of the Mir155hg activators: Myc and Myb. Finally, upon inhibition of either Myb or miR-155 in vitro the AML progenitors restore PU.1 levels and lose leukaemic cell growth. Conclusion: In summary, PU.1 and p53 double mutant mice develop aggressive AML with dysplastic features. Defective control of PU.1 levels in PU.1ure/ure and PU.1ure/ure p53−/−AML involves miR-155. Lastly, restored PU.1 level and cell differentiation capacity are achieved by inhibiting either Myb or miR-155 in the PU.1ure/ure p53−/− progenitors. (Grant support: P305/12/1033, UNCE 204021, PRVOUK-P24/LF1/3, SVV-2012-264507, P301/12/P380. MK was sponsored by GAUK 251070 45410, 251135 82210) Disclosures: No relevant conflicts of interest to declare.


Genetics ◽  
2021 ◽  
Author(s):  
Melissa R Bentley-Ford ◽  
Melissa LaBonty ◽  
Holly R Thomas ◽  
Courtney J Haycraft ◽  
Mikyla Scott ◽  
...  

Abstract Primary cilia are sensory and signaling hubs with a protein composition that is distinct from the rest of the cell due to the barrier function of the transition zone (TZ) at the base of the cilium. Protein transport across the TZ is mediated in part by the BBSome, and mutations disrupting TZ and BBSome proteins cause human ciliopathy syndromes. Ciliopathies have phenotypic variability even among patients with identical genetic variants, suggesting a role for modifier loci. To identify potential ciliopathy modifiers, we performed a mutagenesis screen on nphp-4 mutant Caenorhabditis elegans and uncovered a novel allele of bbs-5. Nphp-4;bbs-5 double mutant worms have phenotypes not observed in either individual mutant strain. To test whether this genetic interaction is conserved, we also analyzed zebrafish and mouse mutants. While Nphp4 mutant zebrafish appeared overtly normal, Bbs5 mutants exhibited scoliosis. When combined, Nphp4;Bbs5 double mutant zebrafish did not exhibit synergistic effects, but the lack of a phenotype in Nphp4 mutants makes interpreting these data difficult. In contrast, Nphp4;Bbs5 double mutant mice were not viable and there were fewer mice than expected carrying three mutant alleles. In addition, postnatal loss of Bbs5 in mice using a conditional allele compromised survival when combined with an Nphp4 allele. As cilia are still formed in the double mutant mice, the exacerbated phenotype is likely a consequence of disrupted ciliary signaling. Collectively, these data support an evolutionarily conserved genetic interaction between Bbs5 and Nphp4 alleles that may contribute to the variability in ciliopathy phenotypes.


Blood ◽  
2001 ◽  
Vol 98 (13) ◽  
pp. 3643-3649 ◽  
Author(s):  
Tao Cheng ◽  
Hongmei Shen ◽  
Neil Rodrigues ◽  
Sebastian Stier ◽  
David T. Scadden

Abstract The regulation of stem cell proliferation is a poorly understood process balancing rapid, massive blood cell production in times of stress with maintenance of a multipotent stem cell pool over decades of life. Transforming growth factor β1 (TGF-β1) has pleiotropic effects on hematopoietic cells, including the inhibition of primitive cell proliferation. It was recently demonstrated that the cyclin-dependent kinase inhibitors, p21Cip1/Waf1 (p21) and p27Kip1 (p27), can inhibit the proliferation of hematopoietic stem cells and progenitor cells, respectively. The relation of TGF-β1 stimulation to p21 and p27 was examined using a fine-mapping approach to gene expression in individual cells. Abundant TGF-β1 expression and p21 expression were documented in quiescent, cytokine-resistant hematopoietic stem cells and in terminally differentiated mature blood cells, but not in proliferating progenitor cell populations. TGF-β1 receptor (TβR II) was expressed ubiquitously without apparent modulation. Cell- cycle–synchronized 32D cells exposed to TGF-β1 demonstrated a marked antiproliferative effect of TGF-β1, yet neither the level of p21 mRNA nor the protein level of either p21 or p27 was altered. To corroborate these observations in primary cells, bone marrow mononuclear cells derived from mice engineered to be deficient in p21 or p27 were assessed. Progenitor and primitive cell function was inhibited by TGF-β1 equivalently in −/− and +/+ littermate controls. These data indicate that TGF-β1 exerts its inhibition on cell cycling independent of p21 and p27 in hematopoietic cells. TGF-β1 and p21 or p27 participate in independent pathways of stem cell regulation, suggesting that targeting each may provide complementary strategies for enhancing stem or progenitor cell expansion and gene transduction.


Blood ◽  
1978 ◽  
Vol 51 (3) ◽  
pp. 539-547 ◽  
Author(s):  
DH Chui ◽  
SK Liao ◽  
K Walker

Erythroid progenitor cells in +/+ and Sl/Sld fetal livers manifested as burst-forming units-erythroid (BFU-E) and colony-forming units- erythroid (CFU-E) were assayed in vitro during early development. The proportion of BFU-E was higher as mutant than in normal fetal livers. On the other hand, the proportion of CFU-E was less in the mutant than in the normal. These results suggest that the defect in Sl/Sld fetal hepatic erythropoiesis is expressed at the steps of differentiation that effect the transition from BFU-E to CFU-E.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2346-2346
Author(s):  
Chun Fan ◽  
Richard Yunkang Liu ◽  
Kristine Li ◽  
Kenneth S. Zuckerman

Abstract Abstract 2346 The ability to produce hematopoietic cells from human embryonic stem cells (hESC) has been demonstrated, using different multistage culture systems with multiple growth factor combinations. However, very little is understood about the molecular mechanisms that regulate the differentiation from hESC to hematopoietic stem and progenitor cells and further to specific lineages of differentiated hematopoietic cells. Among many signaling pathways involved in stem and progenitor cell differentiation, the JAK/STAT pathways are known to play critical roles in hematopoietic stem cell maintenance and hematopoietic differentiation. STAT3 activation is known to be essential for maintenance of murine ESC, but not human ESC, but it appears not to play a major role in myeloid cell differentiation. Although different levels of JAK2 and STAT5 signaling are important for erythroid and megakaryocytic differentiation, JAK/STAT signaling is not thought to play a role in hESC maintenance or differentiation and is not known to be essential for early stages of differentiation to hematopoietic stem and progenitor cells (HSC/HPC). We have established a serum-free, feeder cell-free system for maintaining hESC (H1 and H9 cells) and for differentiating the hESC to embryoid bodies (EB), from which end-stage hematopoietic cells, notably megakaryocytes and platelets, are produced. We used a multi-stage culture system to produce megakaryocytes and platelets from EBs, including 2 days with vascular endothelial growth factor (VEGF) and bone morphogenic protein (BMP4), 2 more days with VEGF, BMP4, stem cell factor (SCF), Flt3 ligand (FL), and thrombopoietin (TPO), 10 days with VEGF, BMP4, TPO, SCF, FL, IL3, IL6, and IL11, and 2–6 weeks with TPO, SCF, FL, IL3, IL6, and IL11. We used serial western blots, immunofluorescence with confocal microscopy and systematically observed changes of JAK/STAT signal transduction molecule activation. We found a consistent, dynamic change of STAT5 protein phosphorylation during the hematopoietic differentiation process. Interestingly, although JAK2, STAT3 and STAT5 protein were present, and JAK2 and STAT3 were phosphorylated in hESC, there was no evidence of STAT5 phosphorylation/activation in the undifferentiated hESC. During the early phases of differentiation of hESC-derived EBs toward hematopoietic progenitors in the presence of hematopoiesis-related cytokines, STAT5 was phosphorylated and activated in CD34+ HSCs and in CD61+/CD235a (glycophorin A)+ or CD41+/CD235a+ early megakaryocytic/erythroid progenitor cells (MEP). Although there was no detectable change in total STAT5 protein expression levels through hematopoietic differentiation, there was a slowly progressive decrease in phosphorylated/activated STAT5 with further maturation to megakaryocytes that express CD42b+, platelet factor 4, and von Willebrand factor and form proplatelets and platelets. Thus, in spite of hESC containing abundant phosphorylated JAK2, which is a known activator of STAT5, there was no phosphorylation/activation of STAT5 in undifferentiated hESC or early EBs. However, STAT5 became phosphorylated/activated early in hematopoiesis and declined over the course of progressive differentiation along the megakaryocytic lineage. These findings imply that activated JAK2 does not drive the activation of STAT5 that is an early event in differentiation from EBs and mesoderm to HSC and HPC in vitro. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 190 (10) ◽  
pp. 1493-1504 ◽  
Author(s):  
Vivienne I. Rebel ◽  
Sheila Hartnett ◽  
Geoffrey R. Hill ◽  
Suzan B. Lazo-Kallanian ◽  
James L.M. Ferrara ◽  
...  

Hematopoietic stem cell (HSC) self-renewal is a complicated process, and its regulatory mechanisms are poorly understood. Previous studies have identified tumor necrosis factor (TNF)-α as a pleiotropic cytokine, which, among other actions, prevents various hematopoietic progenitor cells from proliferating and differentiating in vitro. However, its role in regulating long-term repopulating HSCs in vivo has not been investigated. In this study, mice deficient for the p55 or the p75 subunit of the TNF receptor were analyzed in a variety of hematopoietic progenitor and stem cell assays. In older p55−/− mice (>6 mo), we identified significant differences in their hematopoietic system compared with age-matched p75−/− or wild-type counterparts. Increased marrow cellularity and increased numbers of myeloid and erythroid colony-forming progenitor cells (CFCs), paralleled by elevated peripheral blood cell counts, were found in p55-deficient mice. In contrast to the increased myeloid compartment, pre-B CFCs were deficient in older p55−/− mice. In addition, a fourfold decrease in the number of HSCs could be demonstrated in a competitive repopulating assay. Secondary transplantations of marrow cells from primary recipients of p55−/− marrow revealed impaired self-renewal ability of p55-deficient HSCs. These data show that, in vivo, signaling through the p55 subunit of the TNF receptor is essential for regulating hematopoiesis at the stem cell level.


Blood ◽  
2006 ◽  
Vol 108 (7) ◽  
pp. 2190-2197 ◽  
Author(s):  
Zhenlan Xing ◽  
Marnie A. Ryan ◽  
Deidre Daria ◽  
Kalpana J. Nattamai ◽  
Gary Van Zant ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPCs) are located in the bone marrow in close association with a highly organized 3-dimensional structure formed by stroma cells, referred to as the niche. Mobilization of HSPCs from bone marrow to peripheral blood in response to granulocyte colony-stimulating factor (G-CSF) requires de-adhesion of HSPCs from the niche. The influence of aging of HSPCs on cell-stroma interactions has not been determined in detail. Using a mouse model of G-CSF–induced mobilization, we demonstrated that the ability to mobilize hematopoietic stem cells is approximately 5-fold greater in aged mice. Competitive mobilization experiments confirmed that enhanced mobilization ability was intrinsic to the stem cell. Enhanced mobilization efficiency of primitive hematopoietic cells from aged mice correlated with reduced adhesion of hematopoietic progenitor cells to stroma and with elevated levels of GTP-bound Cdc42. These results might indicate that stroma–stem cell interactions are dynamic over a lifetime and result in physiologically relevant changes in the biology of primitive hematopoietic cells with age.


2021 ◽  
Author(s):  
Melissa R Bentley-Ford ◽  
Melissa LaBonty ◽  
Holly R Thomas ◽  
Courtney J Haycraft ◽  
Mikyla Scott ◽  
...  

Primary cilia are sensory and signaling hubs with a protein composition that is distinct from the rest of the cell due to the barrier function of the transition zone (TZ) at the base of the cilium. Protein transport across the TZ is mediated in part by the BBSome, and mutations disrupting TZ and BBSome proteins cause human ciliopathy syndromes. Ciliopathies have phenotypic variability even among patients with identical genetic variants, suggesting a role for modifier loci. To identify potential ciliopathy modifiers, we performed a mutagenesis screen on nphp-4 mutant C. elegans and uncovered a novel allele of bbs-5. Nphp-4;bbs-5 double mutant worms have phenotypes not observed in either individual mutant strain. To test whether this genetic interaction is conserved, we also analyzed zebrafish and mice mutants. While Nphp4 mutant zebrafish appeared overtly normal, Bbs5 mutants exhibited scoliosis. When combined, Nphp4;Bbs5 double mutant zebrafish did not exhibit synergistic effects, but the lack of a phenotype in Nphp4 mutants makes interpreting these data difficult. In contrast, viable Nphp4;Bbs5 double mutant mice were not obtained and there were fewer mice than expected carrying three mutant alleles. Additionally, postnatal loss of Bbs5 in mice using a conditional allele compromised survival when combined with a Nphp4 allele. As cilia are formed in the double mutant mice, the exacerbated phenotype is likely a consequence of disrupted ciliary signaling. Collectively, these data support an evolutionarily conserved genetic interaction between Bbs5 and Nphp4 alleles that may contribute to the variability in ciliopathy phenotypes.


Sign in / Sign up

Export Citation Format

Share Document