Jagged2 promotes the development of natural killer cells and the establishment of functional natural killer cell lines

Blood ◽  
2005 ◽  
Vol 105 (9) ◽  
pp. 3521-3527 ◽  
Author(s):  
Sarah L. DeHart ◽  
Marc J. Heikens ◽  
Schickwann Tsai

AbstractEmerging evidence indicates that Notch receptors and their ligands play important roles in the development of T cells and B cells. However, little is known about their possible roles in the development of other lymphoid cells. Here we demonstrate that Jagged2, a Notch ligand, stimulates the development of natural killer (NK) cells from Lin- Sca-1+ c-kit+ hematopoietic stem cells. Our culture system supports NK cell development for 2 to 3 months, often leading to the establishment of continuous NK cell lines. The prototype of such cell lines is designated as KIL. KIL depends on interleukin-7 for survival and proliferation and is NK1.1+ CD3- TCRαβ- TCRδγ- CD4- CD8- CD19- CD25+ CD43+ CD45+ CD49b- CD51+ CD94+ NKG2D+ Mac-1-/low B220- c-kit+ perforin I+ granzyme B+ Notch-1+, and cytotoxic. Like normal natural killer cells, the T-cell receptor-β loci of KIL remain in the germ-line configuration. In response to interleukin-2, KIL proliferates extensively (increasing cell number by approximately 1010-fold) and terminally differentiates into adherent, hypergranular NK cells. Our findings indicate that Jagged2 stimulates the development of natural killer cells and the KIL cell line preserves most properties of the normal NK precursors. As such, KIL provides a valuable model system for NK cell research.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A133-A134
Author(s):  
Kyle Lupo ◽  
Sandro Matosevic

BackgroundSolid tumors such as GBM are particularly difficult to treat, being largely resistant to traditional treatments, fueling interest in alternative treatment approaches, including cell-based immunotherapy. Natural killer (NK) cells have emerged as promising effectors to target GBM through genetic modifications and ex vivo manipulation. However, immunosuppressive conditions within the tumor microenvironment (TME) further complicate NK cell-based treatments. Specifically, within the TME tumor cells release of high levels of ATP extracellularly. While intracellular ATP is necessary for cell metabolism, extracellular ATP is converted into adenosine (ADO) by ectonucleotidases CD39 and CD73, both overexpressed on GBM.1 Extracellular ADO induces immunometabolic suppression of NK cells through binding with A2A adenosine receptors (A2ARs) on NK cells, suppressing cytokine secretion, proliferation, and other functional activities. 2–4 Adding to the suppression of NK cells is the interaction between CD155, expressed highly on GBM and other solid tumors, and T cell immunoreceptor with Ig and ITIM domains (TIGIT) expressed on NK cells. This interaction signals inhibition of NK cell cytolytic function, allowing for cancer cell immune-evasion.5,6MethodsTo restore impaired NK cell anti-tumor activity, we have engineered NK cells to concomitantly target CD155 and CD73-induced immunosuppression on GBM using a tumor-responsive genetic construct. The construct is capable of blocking the immunosuppressive CD155/TIGIT interaction, and, upon binding, release a CD73-blocking scFv to inhibit the accumulation of extracellular ADO and mitigate immunosuppression of NK cells. Such localized response enhances specificity and reduces off-target effects of NK-based targeting.ResultsPrimary NK cells were successfully electroporated to express our synthetic TIGIT-synNotch construct, as evidenced by increased expression levels of TIGIT (% and MFI) (figure 1). To evaluate the functionality of engineered NK cells against GBM targets, we tested the cytotoxicity of our engineered NK cells against a primary, patient-derived GBM cell line, GBM43. Overall, cytolytic function of engineered NK cells against GBM was significantly higher than that of non-engineered NK cells, with or without CD73 (10 ug/mL) and TIGIT (50 ug/mL) antibodies, for E:T ratios of 5:1 and 10:1 (figure 2), demonstrating the functional efficacy of our genetic construct. Further, engineered NK cells (T-PNK) expressed significantly higher levels of CD107a in response to GBM43 stimulation than non-engineered PNK at E:T ratios 2.5:1 and 10:1 (figure 3).Abstract 123 Figure 1TIGIT-synNotch gene expressionGene expression (left: %, right, MFI) of electroporated NK cells engineered with anti-CD73 and TIGIT blocking mRNAAbstract 123 Figure 2Engineered NK cell cytotoxicityCytotoxicity of NK cells against GBM43 cells at E:T ratios of 2.5:1, 5:1, and 10:1. NK cells were either un-transfected (with and without CD73 and TIGIT mAbs), transfected with the TIGIT-synNotch construct, or transfected with the TIGIT-synNotch and CD73 genetic constructsAbstract 123 Figure 3Engineered NK cell degranulationCD107a expression measured on transfected and non-transfected NK cells stimulated with GBM43 at E:T ratios of 2.5:1, 5:1, and 10:1ConclusionsOverall, we have shown that co-targeting CD155 and CD73 in a localized, responsive manner can dampen immunosuppression and significantly enhance the killing potential of engineered NK cells against aggressive patient-derived GBM tumors.ReferencesChambers AM, et al. Adenosinergic Signaling Alters Natural Killer Cell Functional Responses. Front. Immunol 2018;9:2533.Chambers AM, Lupo KB & Matosevic S. Tumor microenvironment-induced immunometabolic reprogramming of natural killer cells. Front Immunol 2018;9:2517.Chambers AM, et al. Adenosinergic signaling alters natural killer cell functional responses. Front. Immunol 2018;9:2533.Wang, J., Lupo, K. B., Chambers, A. M. & Matosevic, S. Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J. immunotherapy cancer 2018;6:136.Zhang B, et al. Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother 2016;65:305–314.Lupo KB & Matosevic S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J Hematol Oncol 2020;13:76.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A139-A139
Author(s):  
Kyle Lupo ◽  
Sandro Matosevic

BackgroundNatural killer (NK) cells have emerged as promising effectors to target GBM and other solid tumors through genetic modifications and ex vivo manipulation. However, immunosuppressive conditions within the tumor microenvironment (TME) and interactions between NK cell activating and inhibitory receptors further complicate NK cell-based treatments. In particular, the T cell immunoreceptor with Ig and ITIM domains (TIGIT) is expressed on NK cells and interacts with CD155 to induce immunosuppression of NK cell cytolytic functions.1 2 Although CD155 also binds with activating receptors DNAM-1 and CD96 on NK cells, spurring NK cell activity, TIGIT has predominantly been reported as having an inhibitory effect on NK cells.3–5 Further, tumor cells release of high levels of ATP extracellularly. While intracellular ATP is necessary for cell metabolism, extracellular ATP is converted into adenosine (ADO) by ectonucleotidases CD39 and CD73, both overexpressed on GBM and other solid tumors.6 Extracellular ADO induces immunometabolic suppression of NK cells through binding with A2A adenosine receptors (A2ARs) on NK cells, suppressing cytokine secretion, proliferation, and other functional activities.7–9 We found that TIGIT and CD73 are effective combination targets in GBM for both primary and iPSC-derived NK cells.MethodsIn order to effectively target immunometabolic reprogramming induced by CD73-produced adenosine and the immunosuppressive TIGIT-CD155 axis, we have engineered NK cells to concomitantly target CD155 and CD73-induced immunosuppression on GBM using a tumor-responsive genetic construct based on the synNotch signaling system. The construct is capable of blocking the immunosuppressive CD155/TIGIT interaction, and, upon binding, release a CD73-blocking scFv to inhibit the accumulation of extracellular ADO and mitigate immunosuppression of NK cells. Such localized response enhances specificity and reduces off-target effects of NK-based targeting.ResultsPrimary NK cells and iPSC-derived NK cells were successfully engineered to express the synthetic TIGIT-synNotch construct, measured through expression of TIGIT. To evaluate the functionality of engineered NK cells against GBM targets, we tested the cytotoxicity of our engineered NK cells against a primary, patient-derived GBM cell line, GBM43. Overall, cytolytic function of engineered NK cells against GBM was significantly higher than that of non-engineered NK cells, with or without CD73 (10 ug/mL) and TIGIT (50 ug/mL) antibodies, for E:T ratios of 5:1 and 10:1, demonstrating the functional efficacy of our genetic construct.ConclusionsOverall, we have shown that co-targeting CD155 and CD73 in a localized, responsive manner can dampen immunosuppression and significantly enhance the killing potential of engineered NK cells against aggressive patient-derived GBM tumors.ReferencesZhang B, et al. Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother 2016;65:305–314.Lupo KB & Matosevic S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J Hematol Oncol 2020;13:76.Hung AL, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. OncoImmunology 2018; e1466769. doi:10.1080/2162402X.2018.1466769.Mahnke K & Enk, AH. TIGIT-CD155 Interactions in Melanoma: A Novel Co-Inhibitory Pathway with Potential for Clinical Intervention. Journal of Investigative Dermatology 2016; 136, 9–11.Stanietsky N, et al. Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR: Innate immunity. Eur J Immunol 2013; 43:2138–2150.Chambers AM, et al. Adenosinergic Signaling Alters Natural Killer Cell Functional Responses. Front Immunol 2018;9:2533.Chambers AM, Lupo KB & Matosevic S. Tumor Microenvironment-Induced Immunometabolic Reprogramming of Natural Killer Cells. Front Immunol 2018;9:2517.Chambers AM. et al. Adenosinergic Signaling Alters Natural Killer Cell Functional Responses. Front Immunol 2018;9:2533.Wang J, Lupo KB, Chambers AM & Matosevic S. Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J Immunotherapy Cancer 2018;6:136.Ethics ApprovalPrimary human NK cells were obtained from healthy adult donors approved under Purdue University’s Institutional Review Board (IRB) (IRB-approved protocol #1804020540). Donors gave written informed consent prior to taking part in the study.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A137-A137
Author(s):  
Hadia Lemar ◽  
Anmol Vohra ◽  
Ming-Hong Xie ◽  
Ivan Chan ◽  
Sasha Lazetic ◽  
...  

BackgroundNK cells expanded on membrane-bound (mb) IL-15 and 41BBL expressing K562 stimulatory cells (NKSTIM) for clinical use can be genetically modified to express activating chimeric receptors.1 2 3 NK cells activated in the presence of IL-12, IL-15 and IL-18 develop cytokine induced memory-like (CIML) phenotype and function; these cells have shown clinical promise.4 Additionally, HSCT AML transplants using NK KIR Haplotype Group B donors with better and best Group B profiles (≥2 activating genes) show better survival.5 6 Here we investigate whether KIR profiles impact healthy allogeneic donor NK cell function and phenotype when these cells are expanded on NKSTIM in the presence of IL-12 and IL-18 (12–18).MethodsHealthy donor PBMC NK were genotyped for HLA and KIR and expanded on K562-mbIL15-41BBL stimulatory cells with IL-2 alone or with IL-2 plus IL-12 and IL-18 (12–18). Expanded NK were transduced with CAR constructs including CD19, and then evaluated for NK cell expansion, cytokine secretion, RNA profiles, cytotoxicity against tumor lines, and cell surface phenotypes. Expanded CD19 NK donors with varying numbers of activating KIR vs inhibitory KIR were tested for effector function, and these donors were then tested for in vivo efficacy and pharmacokinetics. A KIR ranking score was developed by considering both the number of activating and inhibitory KIR genes expressed by each donor. This score was correlated with functional properties of CAR NK cells.ResultsAddition of 12–18 to the K562-mbIL15-41BBL stimulatory cells improves CD19-CAR NK potency 2-fold relative to the stimulatory cell line alone (P=.02) while NK cell expansion is unchanged. 12–18 also drove an increase in effector cytokine accumulation on exposure of CAR-NK to CD19 tumor. CIML CAR NK cells from donors with higher KIR scoring also had higher cytotoxicity (Pearson’s R=0.74, P=0.006); this correlation was not observed following expansion in the absence of 12–18. 12–18 also drove more potent in vivo activity against tumor with an increased presence of circulating NK cells over 4 weeks in the mice.ConclusionsCIML CAR NK cells derived from donors with favorable KIR scoring have greater cytotoxic activity, effector cytokine production, and in vivo pharmacokinetics and efficacy. These findings may provide an important criterion for donor selection in the development of more robust and potent engineered NK cells for clinical use.ReferencesLapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, Dandekar V, Mei Z, Jackson K, Vera J, Ando J, Ngo MC, Coustan-Smith E, Campana D, Szmania S, Garg T, Moreno-Bost A, Vanrhee F, Gee AP, Rooney CM. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy 2012;14(9):1131–1143.Chihaya I, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005;106:376–383.Yang Y, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D. A Chimeric Receptor with NKG2D Specificity Enhances Natural Killer Cell Activation and Killing of Tumor Cells. Cancer Res 2013;73(6):1777–1786.Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S, Neal CC, Yu L, Oh ST, Lee YS, Mulder A, Claas F, Cooper MA, Fehniger TA. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Trans Med 2016;8(357): 357ra123.Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Le CT, Marsh SGE, Geraghty D, Spellman S, Haagenson MD, Ladner M, Trachtenberg E, Parham P, and Miller JS. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 2010;116(14):2414–2419.Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Marsh SGE, Spellman S, Haagenson MD, Saeturn K, Ladner M, Trachtenberg E, Parham P, and Miller JS. Donor Killer Cell Ig-like Receptor B Haplotypes, Recipient HLA-C1, and HLA-C Mismatch Enhance the Clinical Benefit of Unrelated Transplantation for Acute Myelogenous Leukemia. JI, 2014;192(10):4592–600.Ethics ApprovalAnimal studies were conducted with IACUC approval.


2018 ◽  
Vol 315 (6) ◽  
pp. L977-L990 ◽  
Author(s):  
Matthew T. Rätsep ◽  
Stephen D. Moore ◽  
Salema Jafri ◽  
Melissa Mitchell ◽  
Hugh J. M. Brady ◽  
...  

Natural killer (NK) cells are cytotoxic innate lymphoid cells with an established role in the regulation of vascular structure in pregnancy and cancer. Impaired NK cell function has been identified in patients with pulmonary arterial hypertension (PAH), a disease of obstructive vascular remodeling in the lungs, as well as in multiple rodent models of disease. However, the precise contribution of NK cell impairment to the initiation and progression of PAH remains unknown. Here, we report the development of spontaneous pulmonary hypertension in two independent genetic models of NK cell dysfunction, including Nfil3−/− mice, which are deficient in NK cells due to the absence of the NFIL3 transcription factor, and Ncr1-Gfp mice, which lack the NK activating receptor NKp46. Mouse models of NK insufficiency exhibited increased right ventricular systolic pressure and muscularization of the pulmonary arteries in the absence of elevated left ventricular end-diastolic pressure, indicating that the development of pulmonary hypertension was not secondary to left heart dysfunction. In cases of severe NK cell impairment or loss, a subset of mice failed to develop pulmonary hypertension and instead exhibited reduced systemic blood pressure, demonstrating an extension of vascular abnormalities beyond the pulmonary circulation into the systemic vasculature. In both mouse models, the development of PAH was linked to elevated interleukin-23 production, whereas systemic hypotension in Ncr1-Gfp mice was accompanied by a loss of angiopoietin-2. Together, these results support an important role for NK cells in the regulation of pulmonary and systemic vascular function and the pathogenesis of PAH.


2019 ◽  
Vol 5 (10) ◽  
pp. FSO425
Author(s):  
Ricardo García-Muñoz ◽  
María-Josefa Nájera ◽  
Jesús Feliu ◽  
Judith Antón-Remírez ◽  
Enrique Ramalle-Gómara ◽  
...  

Aim: To analyze the effects of subcutaneous or intravenous rituximab + lymphokine-activated killer cells, obinutuzumab or ibrutinib on natural killer (NK) cell levels in chronic lymphocytic leukemia and follicular lymphoma patients. Patients & methods: The distribution of peripheral blood NK cells of 31 patients was analyzed by flow cytometry. Results: We detected a decrease of NK cells in peripheral blood below normal range after obinutuzumab treatment. During maintenance treatment with subcutaneous rituximab, an NK cell reduction was less pronounced than after intravenous rituximab treatment, despite lymphokine-activated killer cell infusions. Conclusion: After one dose of obinutuzumab, each NK cell in peripheral blood destroys 25 leukemic cells.


Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3850-3861 ◽  
Author(s):  
Shigeki Nagashima ◽  
Robbie Mailliard ◽  
Yoshiro Kashii ◽  
Torsten E. Reichert ◽  
Ronald B. Herberman ◽  
...  

Abstract A variety of strategies have been attempted in the past to stably transduce natural killer (NK) cells with cytokine or other cellular genes. Here, we demonstrate the successful delivery of the interleukin-2 (IL-2) gene into two human NK cell lines, IL-2–dependent NK-92 and IL-2–independent YT, by retroviral transduction. An MuLV-based retroviral vector expressing human IL-2 andneor markers from a polycistronic message was constructed and transduced into a CRIP packaging cell line. By coincubation of NK cells with monolayers of CRIP cells or by using retrovirus-containing supernatants in a flow-through method, 10% to 20% of NK cells were stably transduced. Upon selection in the presence of increasing G418 concentrations, transduced NK cells were able to proliferate independently of IL-2 for more than 5 months and to secrete up to 5.5 ng/106 cells/24 h of IL-2. IL-2 gene-transduced NK-92 cells had an in vitro cytotoxicity against tumor targets that was significantly higher than that of parental cells and secreted interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) in addition to IL-2. Moreover, the in vivo antitumor activity of IL-2 gene-transduced NK-92 cells against established 3-day liver metastases in mice was greater than that of parental nontransduced NK cells. Stable expression of the IL-2 transgene in NK cells improved their therapeutic potential in tumor-bearing hosts. Thus, transduced NK cells secreted sufficient quantities of bioactive IL-2 to proliferate in vitro and mediated the antitumor effects both in vitro and in vivo in the absence of exogenous IL-2. These results suggest that genetic modification of NK cells ex vivo could be useful for clinical cancer therapy in the future.


2000 ◽  
Vol 191 (8) ◽  
pp. 1341-1354 ◽  
Author(s):  
Hamish R.C. Smith ◽  
Hubert H. Chuang ◽  
Lawrence L. Wang ◽  
Margarita Salcedo ◽  
Jonathan W. Heusel ◽  
...  

Murine natural killer cells (NK) express lectin-like activation and inhibitory receptors, including the CD94/NKG2 family of receptors that bind Qa-1, and the Ly-49 family that recognizes major histocompatibility complex class I molecules. Here, we demonstrate that cross-linking of NK cells with a new specific anti–Ly-49H mAb induced NK cell cytotoxicity and cytokine production. Ly-49H is expressed on a subset of NK cells and can be coexpressed with Ly-49 inhibitory receptors. However, unlike Ly-49 inhibitory receptors, Ly-49H is not detectable on naive splenic CD3+ T cells, indicating that Ly-49H may be an NK cell–specific activation receptor. In further contrast to the stochastically expressed Ly-49 inhibitory receptors, Ly-49H is preferentially expressed with the Ly-49D activation receptor, and expression of both Ly-49H and Ly-49D is augmented on NK cells that lack receptors for Qa-1 tetramers. On developing splenic NK1.1+ cells, Ly-49D and Ly-49H are expressed later than the inhibitory receptors. These results directly demonstrate that Ly-49H activates primary NK cells, and suggest that expression of Ly-49 activation receptors by NK cells may be specifically regulated on NK cell subsets. The simultaneous expression of multiple activation receptors by individual NK cells contrasts with that of T cell antigen receptors and is relevant to the role of NK cells in innate immunity.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2464-2464
Author(s):  
Carissa Dege ◽  
Katherine H Fegan ◽  
J Philip Creamer ◽  
Melissa M Berrien-Elliott ◽  
Stephanie A. Luff ◽  
...  

Natural killer (NK) cells are innate immune cells that target and kill virally infected and malignant cells, making them an attractive target for adoptive immunotherapies. An alternative to donor-derived NK cells is the use of human pluripotent stem cell (hPSC)-derived NK cells, as a renewable "off the shelf" product. Previous studies have identified hPSC-derived NK cells as potently cytotoxic, compared to donor-derived NK cells. As the differentiation of hPSCs mimics early embryonic development, this raises the possibility that hPSC-derived NK cells are ontogenically distinct from adult NK cells. NK cells are present during embryonic hematopoiesis, but their ontogenic origins are poorly understood. NK cells are thought to arise from a common lymphoid progenitor (CLP), lying downstream of hematopoietic stem cells (HSCs), but evidence exists that NK cells may arise from HSC-independent progenitors as NK cells are found in the early murine fetal liver, and NK cell progenitors are found in the early human yolk sac (YS). In this study, we investigated the emergence of NK cells during murine and human embryonic hematopoietic development. During murine embryogenesis, overlapping HSC-independent waves of hematopoietic progenitors occur in the YS that give rise to hematopoietic cells prior to HSC emergence at E10.5. The "primitive" wave occurs at E7.5, followed by an "erythro-myeloid progenitor" (EMP) wave at E8.5. To study NK cell potential during murine YS hematopoiesis, we cultured total YS and sorted hematopoietic progenitors under NK cell promoting conditions. Strikingly, we found that the YS contains NK cell potential. Further, sorted E8.5 kit+CD41+CD16/32+ EMP progenitors, but not primitive hematopoietic progenitors, contain robust NK cell potential. EMP-derived NK (EMP-NK) cells were larger and more granular than adult CLP-derived NK cells. Additionally, NK cells from the E15.5 fetal liver were larger and more granular than NK cells from the adult spleen. Both EMP-NK cells and E15.5 fetal liver NK cells had a more robust degranulation response than their HSC-derived counterparts. Together, these data support the concept that EMP in the YS serve as an initial source of physiologically relevant, functional embryonic NK cells that are phenotypically and functionally distinct from adult NK cells. As hPSC-derived NK cells were described as potently cytotoxic, and we observed that murine HSC-independent NK cells robustly degranulate, we next asked whether NK cell development from hPSCs recapitulates that found in the murine embryo. We have demonstrated previously, using a stage-specific WNT signal manipulation approach that specifies ontogenically distinct hematopoietic progenitors, that hPSC-derived NK cell progenitors can be obtained from two distinct progenitors in vitro. In this study, we sought to better understand the development and function of these two NK cell populations. Stage-specific WNT inhibition (WNTi) during hPSC mesodermal patterning yielded extra-embryonic-like HOXA-/low CD34+ populations that possessed erythroid, myeloid and NK cell potential, but lacked T cell potential. The CD56+ NK cells in these cultures co-emerged with CD15+ granulocytes, indicating that these NK cells may arise from a committed myeloid progenitor. In contrast, HOXA+ CD34+ cells, obtained in a WNT-dependent (WNTd) manner, harbored erythro-myelo-lymphoid multi-lineage potential, including NK cell potential. Phenotypically, WNTi-NK cells were larger, more granular and more mature, compared to WNTd-NK and cord blood (CB)-derived NK cells, reminiscent of murine EMP-NK cells. Further, following multiple stimulation assays, WNTi-NK and WNTd-NK cells had different effector biases. WNTi-NK cells are biased for potent cytotoxic degranulation and exhibited superior cell killing in an ADCC assay. In contrast, WNTd-NK and CB-NK had an attenuated degranulation response, but robustly produced inflammatory cytokines. Finally, RNA-seq analysis demonstrated that WNTd-NK cells were most similar to CB-NK cells. Collectively, these studies identify for the first time that the murine EMP harbor NK cell potential, and these NK cells are functionally unique. These observations raise new questions regarding which ontogenic origin of NK cells should be used in future hPSC-derived adoptive immunotherapy strategies. Disclosures Fehniger: Cyto-Sen Therapeutics: Consultancy; Horizon Pharma PLC: Other: Consultancy (Spouse). Palis:Rubius Therapeutics: Consultancy.


2016 ◽  
Vol 1 (3) ◽  
pp. 208-218 ◽  
Author(s):  
Rachel J. Bergerson ◽  
Robin Williams ◽  
Hongbo Wang ◽  
Ryan Shanley ◽  
Gretchen Colbenson ◽  
...  

Key Points Low numbers of reconstituting NK cells at D+28 after dUCBT are associated with inferior DFS. Patients with low NK cell numbers at D+28 have reduced phosphorylation of STAT5 upon IL-15 stimulation and less Eomes expression.


Sign in / Sign up

Export Citation Format

Share Document