scholarly journals IL-15 and dermal fibroblasts induce proliferation of natural regulatory T cells isolated from human skin

Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 194-202 ◽  
Author(s):  
Rachael A. Clark ◽  
Thomas S. Kupper

Abstract Regulatory T cells (Tregs) are crucial for the induction and maintenance of self-tolerance and are present in peripheral tissues such as skin and gut under normal, noninflamed conditions. We report isolation and expansion of the Treg population resident in normal human skin. Cutaneous Tregs expressed high levels of CD25, L-selectin, GITR, FOXP3, and intracellular CTLA-4, low levels of CD69, and high levels of the skin-homing addressins CLA, CCR4, and CCR6. Skin Tregs suppressed the proliferation of CD25lo T cells from the same skin sample in response to CD3 and CD28 antibodies. Suppression was dependent on cell contact and not affected by neutralizing antibodies to interleukin-10 (IL-10) and transforming growth factor-β (TGF-β). Surprisingly, cutaneous Tregs proliferated in an antigen-independent manner when cultured in contact with dermal fibroblasts and IL-15, conditions similar to those found in chronically inflamed skin. We hypothesize that local proliferation of Tregs may occur within inflamed skin and could serve as a brake for cutaneous inflammation as well as a mechanism for the homeostatic proliferation of natural Tregs that has been observed within intact organisms.

2010 ◽  
Vol 78 (10) ◽  
pp. 4392-4401 ◽  
Author(s):  
Maria Carolina Ferreira ◽  
Rômulo Tadeu Dias de Oliveira ◽  
Rosiane Maria da Silva ◽  
Maria Heloisa Souza Lima Blotta ◽  
Ronei Luciano Mamoni

ABSTRACT Patients with paracoccidioidomycosis (PCM) exhibit a suppression of the cellular immune response characterized by negative delayed-type hypersensitivity (DTH) to Paracoccidioides brasiliensis antigens, the apoptosis of lymphocytes, and high levels of expression of cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), interleukin-10 (IL-10), and transforming growth factor β (TGF-β). The aim of this study was to investigate whether and how regulatory T cells (Treg cells) are involved in this immunosuppression by analyzing the number, phenotype, and activity of these cells in patients with active disease (AD group) and patients who had received treatment (TD group). Our results showed that the AD patients had more Treg cells than the TD patients or controls (C group) and also had elevated levels of expression of regulatory markers (glucocorticoid-induced tumor necrosis factor [TNF] receptor-related protein [GITR], CTLA-4, CD95L, LAP-1, and CD38). An analysis of regulatory activity showed that Treg cells from the AD group had greater activity than did cells from the other groups and that cell-cell contact is mandatory for this activity in the C group but was only partially involved in the regulatory activity of cells from AD patients. The addition of anti-IL-10 and anti-TGF-β neutralizing antibodies to the cultures showed that the production of cytokines may be another mechanism used by Treg cells. In conclusion, the elevated numbers of these cells with an increased regulatory phenotype and strong suppressive activity suggest a potential role for them in the immunosuppression characteristic of paracoccidioidomycosis. In addition, our results indicate that while Treg cells act by cell-cell contact, cytokine production also plays an important role.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2938-2938 ◽  
Author(s):  
Miroslaw J Szczepanski ◽  
Marta Szajnik ◽  
Malgorzata Czystowska ◽  
Magis Mandapathil ◽  
Ann Welsh ◽  
...  

Abstract An elevated frequency of CD4+CD25high regulatory T cells (Treg) has been reported in the peripheral blood in patients with various solid tumors and hematologic malignancies. Although the increase in Treg seems to be a characteristic feature of most tumors, the functional role of Treg and the mechanisms of suppression, especially in patients with hematologic malignancies, have been less well defined. We investigated Treg-mediated suppression and the responsible mechanisms in thirty newly diagnosed acute myeloid leukemia (AML) patients prior to any treatment and twenty five healthy donors (NC). The percentage of circulating CD4+ CD25high Treg was higher (p <0.0001) in the AML patients (4.5 ±0.2%, range 1.7–8.2%) compared to NC (1.5 ± 0.08%, range 0.9–3.1 %). To evaluate the suppressive function, CD4+CD25high T cells (S) were co-cultured with sorted, CFSE-labeled autologous CD4+CD25high T cells (R) at different S/R ratios. Suppression mediated by Treg co-incubated with proliferating autologous responders was significantly higher (p<0.001) in AML than that mediated by control Treg. To evaluate the role of cytokines produced by Treg in suppression and a need for cell-to- cell contact, transwell analysis of S/R co-cultures was performed. Co-incubation in the presence of transwell inserts (TRI) resulted in significant reduction of suppression (p<0.05), and the addition of neutralizing antibodies to IL-10 and TGF-β1 in the presence of TRI further decreased suppression mediated by Treg. These data suggest that both immunoinhibitory cytokine production and cell-to-cell contact are necessary for suppression. To explore other potential mechanisms of Treg suppression, we evaluated the expression by Treg of ectonucleotidases CD39 and CD73 and the capability of Treg to produce adenosine. CD4+CD25high T cells of AML patients had higher expression (p<0.01) of CD39 and more efficiently hydrolyzed ATP to adenosine relative to Treg in NC. These data indicate that various mechanisms of suppression may be utilized by Treg in patients with AML. The increase frequency of Treg mediating potent suppression by various mechanisms is likely to play a role in host anti-tumor immune responses. Therefore, modulation of the frequency and functions of Treg might provide new immunotherapeutic approaches in AML.


2002 ◽  
Vol 196 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Ciriaco A. Piccirillo ◽  
John J. Letterio ◽  
Angela M. Thornton ◽  
Rebecca S. McHugh ◽  
Mizuko Mamura ◽  
...  

CD4+CD25+ regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4+CD25−T cells and are potent suppressors of T cell activation in vitro. Their mechanism of suppression remains unknown, but most in vitro studies suggest that it is cell contact–dependent and cytokine independent. The role of TGF-β1 in CD4+CD25+ suppressor function remains unclear. While most studies have failed to reverse suppression with anti–transforming growth factor (TGF)-β1 in vitro, one recent study has reported that CD4+CD25+ T cells express cell surface TGF-β1 and that suppression can be completely abrogated by high concentrations of anti–TGF-β suggesting that cell-associated TGF-β1 was the primary effector of CD4+CD25+-mediated suppression. Here, we have reevaluated the role of TGF-β1 in CD4+CD25+-mediated suppression. Neutralization of TGF-β1 with either monoclonal antibody (mAb) or soluble TGF-βRII-Fc did not reverse in vitro suppression mediated by resting or activated CD4+CD25+ T cells. Responder T cells from Smad3−/− or dominant-negative TGF-β type RII transgenic (DNRIITg) mice, that are both unresponsive to TGF-β1–induced growth arrest, were as susceptible to CD4+CD25+-mediated suppression as T cells from wild-type mice. Furthermore, CD4+CD25+ T cells from neonatal TGF-β1−/− mice were as suppressive as CD4+CD25+ from TGF-β1+/+ mice. Collectively, these results demonstrate that CD4+CD25+ suppressor function can occur independently of TGF-β1.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1387 ◽  
Author(s):  
Eonju Oh ◽  
JinWoo Hong ◽  
Chae-Ok Yun

Malignant melanoma is the most aggressive form of skin cancer; a substantial percentage of patients present with distant metastases. However, the mechanism of metastasis is not well understood. Here, we demonstrate that the administration of exogenous regulatory T cells (Tregs) into melanoma tumor-bearing mice results in a significant increase in lung metastasis. An increase in the invasive and metastatic phenotype of melanoma was mediated by cell-to-cell contact between melanoma cells and Tregs, which elevated the expression level of transforming growth factor-β (TGF-β) and the subsequent induction of the epithelial-to-mesenchymal transition (EMT). B16-BL6 melanoma tumors co-cultured with Tregs showed a larger population of migrating cells compared to B16-BL6 tumors cultured without Tregs. Additionally, the injection of exogenous Tregs into B16-BL6 melanoma tumors led to the recruitment and infiltration of endogenous Tregs into tumor tissues, thus increasing the overall Treg percentage in the tumor infiltrating lymphocyte population. Collectively, our findings propose novel mechanisms in which exogenous Treg-dependent upregulation of TGF-β and mesenchymal markers is important for augmenting the migration capacity and invasiveness of melanoma, thereby contributing to the metastasis.


Diabetes ◽  
2008 ◽  
Vol 57 (5) ◽  
pp. 1302-1311 ◽  
Author(s):  
M. J. Richer ◽  
N. Straka ◽  
D. Fang ◽  
I. Shanina ◽  
M. S. Horwitz

Sign in / Sign up

Export Citation Format

Share Document