scholarly journals Duplicate VegfA genes and orthologues of the KDR receptor tyrosine kinase family mediate vascular development in the zebrafish

Blood ◽  
2007 ◽  
Vol 110 (10) ◽  
pp. 3627-3636 ◽  
Author(s):  
Nathan Bahary ◽  
Katsutoshi Goishi ◽  
Carsten Stuckenholz ◽  
Gerhard Weber ◽  
Jocelyn LeBlanc ◽  
...  

Abstract Vascular endothelial growth factor A (VEGFA) and the type III receptor tyrosine kinase receptors (RTKs) are both required for the differentiation of endothelial cells (vasculogenesis) and for the sprouting of new capillaries (angiogenesis). We have isolated a duplicated zebrafish VegfA locus, termed VegfAb, and a duplicate RTK locus with homology to KDR/FLK1 (named Kdrb). Morpholino-disrupted VegfAb embryos develop a normal circulatory system until approximately 2 to 3 days after fertilization (dpf), when defects in angiogenesis permit blood to extravasate into many tissues. Unlike the VegfAa121 and VegfAa165 isoforms, the VegfAb isoforms VegfAb171 and VegfAb210 are not normally secreted when expressed in mammalian tissue culture cells. The Kdrb locus encodes a 1361–amino acid transmembrane receptor with strong homology to mammalian KDR. Combined knockdown of both RTKs leads to defects in vascular development, suggesting that they cooperate in mediating the vascular effects of VegfA in zebrafish development. Both VegfAa and VegfAb can individually bind and promote phosphorylation of both Flk1 (Kdra) and Kdrb proteins in vitro. Taken together, our data support a model in the zebrafish, in which duplicated VegfA and multiple type III RTKs mediate vascular development.

2020 ◽  
Vol 26 (42) ◽  
pp. 7623-7640 ◽  
Author(s):  
Cheolhee Kim ◽  
Eunae Kim

: Rational drug design is accomplished through the complementary use of structural biology and computational biology of biological macromolecules involved in disease pathology. Most of the known theoretical approaches for drug design are based on knowledge of the biological targets to which the drug binds. This approach can be used to design drug molecules that restore the balance of the signaling pathway by inhibiting or stimulating biological targets by molecular modeling procedures as well as by molecular dynamics simulations. Type III receptor tyrosine kinase affects most of the fundamental cellular processes including cell cycle, cell migration, cell metabolism, and survival, as well as cell proliferation and differentiation. Many inhibitors of successful rational drug design show that some computational techniques can be combined to achieve synergistic effects.


2020 ◽  
Vol 12 ◽  
pp. 175883592092006
Author(s):  
Hang-Ping Yao ◽  
Sreedhar Reddy Suthe ◽  
Xiang-Min Tong ◽  
Ming-Hai Wang

The recepteur d’origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody–drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.


2013 ◽  
Vol 4 (5) ◽  
pp. 689 ◽  
Author(s):  
Nicole Teller ◽  
Matthias Roth ◽  
Melanie Esselen ◽  
Diana Fridrich ◽  
Ute Boettler ◽  
...  

1991 ◽  
Vol 11 (5) ◽  
pp. 2496-2502
Author(s):  
V Lhoták ◽  
P Greer ◽  
K Letwin ◽  
T Pawson

The elk gene encodes a novel receptorlike protein-tyrosine kinase, which belongs to the eph subfamily. We have previously identified a partial cDNA encompassing the elk catalytic domain (K. Letwin, S.-P. Yee, and T. Pawson, Oncogene 3:621-678, 1988). Using this cDNA as a probe, we have isolated cDNAs spanning the entire rat elk coding sequence. The predicted Elk protein contains all the hallmarks of a receptor tyrosine kinase, including an N-terminal signal sequence, a cysteine-rich extracellular domain, a membrane-spanning segment, a cytoplasmic tyrosine kinase domain, and a C-terminal tail. In both amino acid sequence and overall structure, Elk is most similar to the Eph and Eck protein-tyrosine kinases, suggesting that the eph, elk, and eck genes encode members of a new subfamily of receptorlike tyrosine kinases. Among rat tissues, elk expression appears restricted to brain and testes, with the brain having higher levels of both elk RNA and protein. Elk protein immunoprecipitated from a rat brain lysate becomes phosphorylated on tyrosine in an in vitro kinase reaction, consistent with the prediction that the mammalian elk gene encodes a tyrosine kinase capable of autophosphorylation. The characteristics of the Elk tyrosine kinase suggest that it may be involved in cell-cell interactions in the nervous system.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. 46-48
Author(s):  
M Mehta ◽  
L Wang ◽  
C Guo ◽  
N Warner ◽  
Q Li ◽  
...  

Abstract Background Very early-onset inflammatory bowel disease (VEOIBD) is an emerging global disease, that results in inflammation of the digestive tract. Severe forms of VEOIBD can be caused by mutations in a single gene (monogenic variants) and, can result in death. A candidate gene which codes for a non-receptor tyrosine kinase (nRTK) has recently been implicated as a monogenic cause of IBD (unpublished). Whole exome sequencing was performed in two unrelated children who presented with symptoms of IBD identifying two distinct de novo gain of function mutations (S550Y and P342T). Both mutations are located in the highly conserved region of the nRTK, and were predicted to have similar downstream effects. Furthermore, four other patients with a variety of adult-onset immune disorders have recently been identified with rare variants in the same gene (M450I, R42P, A353T, V433M, S550F) but, their potential gain of function status remains to be determined. Studies show that this nRTK is an essential mediator in inflammation. It is expressed in both intestinal epithelial and immune cells however, its role in infantile IBD is unclear. This protein is first activated by phosphorylation and is linked to activating downstream transcription factors such as ERK and JNK. All these target proteins play a meaningful role in intestinal inflammation in patients with IBD. Aims Since we identified P342T and S550Y to be gain of function, we wanted to determine if the new variants exhibit a similar downstream impact on target protein expression levels when compared with S550Y and P342T. We also wanted to identify if all variants can be rescued with a known nRTK inhibitor. It is hypothesized that the new variants are gain of function and that all variants can be rescued with the inhibitor. Methods Using western blot analysis, the activation of ERK, JNK and nRTK was compared between wildtype (WT) and mutants. This in vitro method helped identify the degree of activation. For the second part of the study, HEK293T cells were treated with inhibitor to test for a rescue of phenotypes via western blot analysis. Results Results show an increased activation of nRTK, ERK and JNK in all variants with S550Y and S550F having the highest activation. Furthermore, pharmacological inhibition using small molecular kinase inhibitors resulted in decreased activation of nRTK, ERK and JNK suggesting a rescue of phenotypes. Conclusions Characterizing the downstream functional impact of these nRTK variants is an important first step to determine if gain of function nRTK mutations drive IBD. With a rising prevalence of IBD worldwide, these findings may lead to the development of pharmacological nRTK inhibitors as a novel personalized therapeutic approach for these patients and possibly for the broader IBD population. Funding Agencies CIHR


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi50-vi51
Author(s):  
Ann-Catherine Stanton ◽  
Robert Koncar ◽  
Brian Golbourn ◽  
Michelle Wassell ◽  
Nishant Agrawal ◽  
...  

Abstract Pediatric High-Grade Gliomas (PHGG), which include Diffuse Midline Gliomas (DMG), are a leading cause of brain tumor death in children. Our recent work has identified extracellular signal-regulated kinase 5 (ERK5) as a critical mediator of cell survival in PHGG. Suppression of ERK5 genetically or pharmacologically leads to decreased cell proliferation and increased apoptosis both in vitro and in vivo in multiple PHGG and H3K27M mutant DMG cell lines. Mechanistically, we show that ERK5 directly stabilizes the proto-oncogene MYC at the protein level, providing rationale to clinically target ERK5. ERK5 contains both a kinase domain (KD) and a transactivation domain (TAD), unlike all other ERKs. Unexpectedly, we found that our ERK5 depleted cells could be partially rescued by an ERK5 kinase domain dead (ERK5-KDD) but TAD intact construct. Additionally, persistent ERK5 depletion does not result in complete growth inhibition and therefore we set out to determine potential adaptation or resistance mechanisms in response to ERK5 loss. To address this, we performed RNA sequencing of DMG cells, comparing control cells to ERK5 knockdown cells, and performed gene-ontology (GO) pathway analysis to identify transcriptional changes that occur in response to ERK5 depletion. We identified 105 differentially expressed genes, and GO analysis identified alternative receptor tyrosine kinase (RTK) gene-expression as one of the top biological processes upregulated in response to ERK5 loss. We validated our top targets at the RNA and the protein level. Our top targets were Erb-B2 Receptor Tyrosine Kinase 4 (ERBB4) and Discoidin Domain Receptor Tyrosine Kinase 2 (DDR2), both clinically actionable targets. Our future work will focus on functional validation of these RTKs as potential resistance mechanisms to ERK5 loss. Identification of resistance mechanisms to ERK5 loss will have both biological and translational relevance and may lead to effective therapeutic combinations.


Sign in / Sign up

Export Citation Format

Share Document