scholarly journals Physiologic and aberrant regulation of memory T-cell trafficking by the costimulatory molecule CD28

Blood ◽  
2006 ◽  
Vol 109 (7) ◽  
pp. 2968-2977 ◽  
Author(s):  
Vincenzo Mirenda ◽  
Sarah J. Jarmin ◽  
Rachel David ◽  
Julian Dyson ◽  
Diane Scott ◽  
...  

Abstract Productive T-cell immunity requires both the activation and the migration of specific T cells to the antigenic tissue. The costimulatory molecule CD28 plays an essential role in the initiation of T-cell–mediated immunity. We investigated the possibility that CD28 may also regulate migration of primed T cells to target tissue. In vitro, CD28-mediated signals enhanced T-cell transendothelial migration, integrin clustering, and integrin-mediated migration. In vivo, T cells bearing a mutation in the CD28 cytoplasmic domain, which abrogates PI3K activation, displayed normal clonal expansion but defective localization to antigenic sites following antigenic rechallenge. Importantly, antibody-mediated CD28 stimulation led to unregulated memory T-cell migration to extra-lymphoid tissue, which occurred independently of T-cell receptor (TCR)–derived signals and homing-receptor expression. Finally, we provide evidence that CD28- and CTLA-4–mediated signals exert opposite effects on T-cell trafficking in vivo. These findings highlight a novel physiologic function of CD28 that has crucial implications for the therapeutic manipulation of this and other costimulatory molecules.

Blood ◽  
2009 ◽  
Vol 113 (24) ◽  
pp. 6138-6147 ◽  
Author(s):  
Audrey Gérard ◽  
Rob A. van der Kammen ◽  
Hans Janssen ◽  
Saskia I. Ellenbroek ◽  
John G. Collard

Abstract Migration toward chemoattractants is a hallmark of T-cell trafficking and is essential to produce an efficient immune response. Here, we have analyzed the function of the Rac activator Tiam1 in the control of T-cell trafficking and transendothelial migration. We found that Tiam1 is required for chemokine- and S1P-induced Rac activation and subsequent cell migration. As a result, Tiam1-deficient T cells show reduced chemotaxis in vitro, and impaired homing, egress, and contact hypersensitivity in vivo. Analysis of the T-cell transendothelial migration cascade revealed that PKCζ/Tiam1/Rac signaling is dispensable for T-cell arrest but is essential for the stabilization of polarization and efficient crawling of T cells on endothelial cells. T cells that lack Tiam1 predominantly transmigrate through individual endothelial cells (transcellular migration) rather than at endothelial junctions (paracellular migration), suggesting that T cells are able to change their route of transendothelial migration according to their polarization status and crawling capacity.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 455-455
Author(s):  
Jaebok Choi ◽  
Edward Dela Ziga ◽  
Julie Ritchey ◽  
Lynne Collins ◽  
Julie Prior ◽  
...  

Abstract Abstract 455 Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative treatment for patients with relapsed/refractory leukemia, and marrow failure states such as myelodysplasia and aplastic anemia. However, allo-HSCT is complicated by allogeneic donor T cell-mediated graft-versus-host disease (GvHD) which can be life-threatening especially in recipients of unrelated or HLA-mismatched hematopoietic stem cell products. These same alloreactive donor T cells also mediate a beneficial graft-versus-leukemia (GvL) effect. Thus, the clinical goal in allo-HSCT is to minimize GvHD while maintaining GvL. Recent studies have suggested that this might be achieved by infusing regulatory T cells (Tregs) which in some preclinical models suppress GvHD-causing alloreactive donor T cells but have only limited effects on GvL-promoting alloreactive donor T cells. Unfortunately, Tregs exist in low frequency in the peripheral blood, are costly to purify and expand, and after expansion are difficult to isolate due to the lack of cell surface markers, all of which prevent their routine use in the clinic. Thus, alternative therapeutic approaches that do not require Tregs are needed. We have found that interferon gamma receptor deficient (IFNγR−/−) allogeneic donor T cells induce significantly less GvHD in both a MHC fully-mismatched (B6 (H-2b) → Balb/c (H-2d)) and a minor-mismatched (B6 (H-2b) → B6×129(H-2b)) allo-HSCT models compared to WT T cells. In addition, IFNγR−/− donor T cells maintain a beneficial GvL effect, which has been examined in both systemic leukemia and solid tumor models using luciferase-expressing A20 cells derived from Balb/c. We find that IFNγR−/− T cells migrate primarily to the spleen while WT T cells to GI tract and peripheral lymph nodes (LNs) using bioluminescence imaging (BLI), suggesting that altered T cell trafficking of IFNγR−/− T cells to GvHD target organs might be the major reason for the reduced GvHD. We further demonstrate that the IFNγR-mediated signaling in alloreactive donor T cells is required for expression of CXCR3 which has been implicated in trafficking of T cells to areas of inflammation and target organs, commonly known to be the sites of GvHD. Indeed, CXCR3−/− T cells recapitulate the reduced GvHD potential of IFNγR−/− T cells. In addition, forced overexpression of CXCR3 in IFNγR−/− T cells via retroviral transduction partially rescues the GvHD defect observed in IFNγR−/− T cells. We next examine if inhibition of IFNγR signaling using a small molecule inhibitor can recapitulate the anti-GVHD effects seen in IFNγR−/− T cells. We find that INCB018424, an inhibitor of JAK1/JAK2 which are the mediators of IFNγR signaling, blocks CXCR3 expression in vitro. Most importantly, in vivo administration of INCB018424 after allo-HSCT alters T cell trafficking and significantly reduces GvHD. Thus, the IFNγR signaling pathway represents a promising therapeutic target for future efforts to mitigate GvHD while maintaining GvL after allo-HSCT. Moreover, this pathway can be exploited in other diseases besides GvHD such as those from organ transplantation, chronic inflammatory diseases and autoimmune diseases. Disclosures: DiPersio: genzyme: Honoraria.


2004 ◽  
Vol 78 (10) ◽  
pp. 5184-5193 ◽  
Author(s):  
Diana M. Brainard ◽  
William G. Tharp ◽  
Elva Granado ◽  
Nicholas Miller ◽  
Alicja K. Trocha ◽  
...  

ABSTRACT Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.


Gut ◽  
2018 ◽  
Vol 67 (11) ◽  
pp. 1984-1994 ◽  
Author(s):  
Eleonora Cremonesi ◽  
Valeria Governa ◽  
Jesus Francisco Glaus Garzon ◽  
Valentina Mele ◽  
Francesca Amicarella ◽  
...  

ObjectiveTumour-infiltrating lymphocytes (TILs) favour survival in human colorectal cancer (CRC). Chemotactic factors underlying their recruitment remain undefined. We investigated chemokines attracting T cells into human CRCs, their cellular sources and microenvironmental triggers.DesignExpression of genes encoding immune cell markers, chemokines and bacterial 16S ribosomal RNA (16SrRNA) was assessed by quantitative reverse transcription-PCR in fresh CRC samples and corresponding tumour-free tissues. Chemokine receptor expression on TILs was evaluated by flow cytometry on cell suspensions from digested tissues. Chemokine production by CRC cells was evaluated in vitro and in vivo, on generation of intraperitoneal or intracecal tumour xenografts in immune-deficient mice. T cell trafficking was assessed on adoptive transfer of human TILs into tumour-bearing mice. Gut flora composition was analysed by 16SrRNA sequencing.ResultsCRC infiltration by distinct T cell subsets was associated with defined chemokine gene signatures, including CCL5, CXCL9 and CXCL10 for cytotoxic T lymphocytes and T-helper (Th)1 cells; CCL17, CCL22 and CXCL12 for Th1 and regulatory T cells; CXCL13 for follicular Th cells; and CCL20 and CCL17 for interleukin (IL)-17-producing Th cells. These chemokines were expressed by tumour cells on exposure to gut bacteria in vitro and in vivo. Their expression was significantly higher in intracecal than in intraperitoneal xenografts and was dramatically reduced by antibiotic treatment of tumour-bearing mice. In clinical samples, abundance of defined bacteria correlated with high chemokine expression, enhanced T cell infiltration and improved survival.ConclusionsGut microbiota stimulate chemokine production by CRC cells, thus favouring recruitment of beneficial T cells into tumour tissues.


2019 ◽  
Author(s):  
Suk Hyun Lee ◽  
Hyunsu Soh ◽  
Jin Hwa Chung ◽  
Eun Hyae Cho ◽  
Sang Joo Lee ◽  
...  

AbstractIntroductionChimeric antigen receptor (CAR) T-cells have been developed recently, producing impressive outcomes in patients with hematologic malignancies. However, there is no standardized method for cell trafficking and in vivo CAR T-cell monitoring. We assessed the feasibility of real-time in vivo89Zr-p-Isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS, DFO) labeled CAR T-cell trafficking using positron emission tomography (PET).ResultsThe 89Zr-DFO radiolabeling efficiency of Jurkat/CAR and human peripheral blood mononuclear cells (hPBMC)/CAR T-cells was 70–79%, and cell radiolabeling activity was 98.1–103.6 kBq/106 cells. Cell viability after radiolabeling was >95%. Compared with unlabeled cells, cell proliferation was not significantly different during the early period after injection; however, the proliferative capacity decreased over time (p = 0.02, day 7 after labeling). IL-2 or IFN-γ secretion was not significantly different between unlabeled and labeled CAR T-cells. PET/magnetic resonance images in the xenograft model showed that most of the 89Zr-DFO-labeled Jurkat/CAR T-cells were distributed in the lung (24.4% ± 3.4%ID) and liver (22.9% ± 5.6%ID) by 1 hour after injection. The cells gradually migrated from lung to the liver and spleen by day 1, and remained stably until day 7 (on day 7: lung 3.9% ± 0.3%ID, liver 36.4% ± 2.7%ID, spleen 1.4% ± 0.3%ID). No significant accumulation of labeled cells was identified in tumors. A similar pattern was observed in ex vivo biodistributions on day 7 (lung 3.0% ± 1.0%ID, liver 19.8% ± 2.2%ID, spleen 2.3% ± 1.7%ID). 89Zr-DFO-labeled hPBMC/CAR T-cells showed the similar distribution on serial PET images as Jurkat/CAR T-cells. The distribution of CAR T-cells was cross-confirmed by flow cytometry, Alu polymerase chain reaction, and immunohistochemistry.ConclusionUsing PET imaging of 89Zr-DFO-labeled CAR T-cells, real time in vivo cell trafficking is feasible. It can be used to investigate cellular kinetics, initial in vivo biodistribution, and the safety profile in future CAR T-cell development.


2018 ◽  
Vol 31 (Supplement_1) ◽  
pp. 156-156
Author(s):  
Melissa Conroy ◽  
Karen Galvin ◽  
Margaret Dunne ◽  
John Reynolds ◽  
Joanne Lysaght

Abstract Background Immunotherapies are transforming cancer treatment for inoperable and advanced disease. However, the incidence of obesity-associated cancers, including oesophageal adenocarcinoma (OAC) continue to increase. Treatment with immune-based therapies present a unique challenge for immunologists, as they need to enhance anti-tumour immunity without exacerbating pre-existing carcinogenic inflammation. Therefore, we examined the effect of PD-1 blockade in omentum and liver of OAC patients, sites of activated inflammatory T cells, which play a key role in obesity-associated inflammation. In addition, we examined novel ways to reduce the infiltration of inflammatory T cells to these sites in a bid to reduce adipose tissue inflammation. Methods Blood, omentum and liver samples were obtained from consenting OAC patients and treated with anti-PD-1 antibody. CD4+ and CD8+ T cell activation, cytokine expression and cytotoxic potential were assessed by flow cytometry. To identify potential chemokine pathways to alter T cell trafficking to the omentum and liver, chemokine receptor expression was examined, along with levels of secreted chemokines using flow cytometry and ELISAs. Pre-treatment of T cells with chemokine receptor antagonists was performed prior to chemotaxis assays using an in vitro transwell system. Results In addition to OAC tumour, omentum and liver were found to be enriched with substantial populations of PD-1 expressing T cells. Treatment of omental and hepatic T cells with anti-PD-1 did not enhance inflammatory cytokine expression or proliferation, but transiently increased CD107a expression by CD8+ T cells. MIP-1α, MIP-1β and IP-10 mediate T cell trafficking to the omentum and liver in OAC. OAC-derived T cells preferentially migrate to the adipose and liver tissue conditioned media of obese OAC patients and this can be significantly reduced using a MIP-1α receptor antagonist. Conclusion This study provides evidence that anti-PD-1 treatment is unlikely to exacerbate pre-existing T cell-mediated inflammation outside the tumour in obesity-associated cancers. Furthermore, novel CCR1 antagonists may be used to attenuate pathological inflammation in obesity. This dual targeting approach aims to enhance anti-tumour immunity through the use of immune checkpoint inhibitors, and has identified a novel immunotherapeutic approach to reduce obesity-associated inflammation by targeting key chemokine pathways. In vivo testing is required to determine the efficacy of this approach. Disclosure All authors have declared no conflicts of interest.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 5573-5573
Author(s):  
Sharina Palencia Desai ◽  
Maryam Bahmani ◽  
Sarah Foster Adams

5573 Background: Ovarian cancer is associated with high mortality due to detection at late stages with widespread peritoneal metastases at diagnosis in a majority of patients. Ovarian cancer recurrences are primarily found in the peritoneal cavity, and peritoneal disease is the primary cause of morbidity and mortality in this disease. This pattern of tumor engraftment and recurrence indicates that the peritoneal tumor environment is distinct from other niches. Our data indicate that selective peritoneal dissemination is immunologically mediated, based on functional differences in peritoneal and systemic T cells during ovarian cancer progression. This is consistent with data in other solid tumors demonstrating that tumor immunity is driven by regional lymphocyte populations. However, less is known about the mechanisms that establish a permissive immune environment in the peritoneal cavity. We hypothesize that pathways regulating T cell recruitment and retention in the peritoneal cavity (PC) are co-opted by ovarian cancer cells to enable intraperitoneal cancer dissemination and recurrence. Methods: We have developed a novel model that uses direct in vivo labeling of peritoneal cells in an established immune-competent high grade serous murine cancer model. This functional approach enables us to identify T cell subsets retained in the PC with tumor engraftment and progression. Results: We identified high expression of CD49d (a4 integrin) as the most prevalent cell surface marker on T cells retained in the peritoneal cavity, consistent with prior published data in healthy mice and people. We demonstrated a functional role for CD49dhi in T cell retention by showing preferential binding to VCAM. A role for tumor cells mediating this interaction was observed based on enhanced binding affinity in vitro with tumor monolayers. The importance of this mechanism is supported by high VCAM expression in multiple murine and human ovarian cancer cell lines, and T cell localization to VCAM rich areas within ovarian cancer tumors in vivo. Conclusions: CD49d not only defines a lymphocyte subset with a significant role in tumor immunity but presents itself as an important potential therapeutic target to modulate T cell trafficking.


Blood ◽  
2012 ◽  
Vol 120 (7) ◽  
pp. 1432-1438 ◽  
Author(s):  
Minyi Lee ◽  
Judith N. Mandl ◽  
Ronald N. Germain ◽  
Andrew J. Yates

Abstract The initiation of T-cell responses requires rare precursors to locate a draining lymph node (dLN) and encounter dendritic cells (DCs) presenting peptide-major histocompatibility complexes (pMHCs). To locate this needle in the haystack rapidly, T cells face an optimization problem—what is the most efficient trafficking strategy for surveillance and recirculation through blood? Two extremes are scanning low numbers of DCs per node with frequent recirculation, or meticulous surveillance with infrequent recirculation. Naive T cells also require stimulation by self-pMHCs. To enable efficient location of both foreign and self, has evolution settled on an optimum time for T cells to spend surveying each lymph node? Using a data-driven mathematical model, we show the most efficient strategy for detecting antigen in a dLN depends on its abundance. Detection of low-density antigen is optimized with systemically slow transit. In contrast, at high densities or if dLN egress is restricted, rapid transit through other nodes is optimal. We argue that blood-lymph recirculation dynamics facilitate a trade-off, and are consistent with dominant roles for the very early detection of rare foreign antigens in a dLN, and the efficient accumulation of signals from systemically distributed self-antigens.


Sign in / Sign up

Export Citation Format

Share Document