Autocrine formation of hepcidin induces iron retention in human monocytes

Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2392-2399 ◽  
Author(s):  
Igor Theurl ◽  
Milan Theurl ◽  
Markus Seifert ◽  
Sabine Mair ◽  
Manfred Nairz ◽  
...  

Hepcidin, a master regulator of iron homeostasis, is produced in small amounts by inflammatory monocytes/macrophages. Chronic immune activation leads to iron retention within monocytes/macrophages and the development of anemia of chronic disease (ACD). We questioned whether monocyte-derived hepcidin exerts autocrine regulation toward cellular iron metabolism. Monocyte hepcidin mRNA expression was significantly induced within 3 hours after stimulation with LPS or IL-6, and hepcidin mRNA expression was significantly higher in monocytes of ACD patients than in controls. In ACD patients, monocyte hepcidin mRNA levels were significantly correlated to serum IL-6 concentrations, and increased monocyte hepcidin mRNA levels were associated with decreased expression of the iron exporter ferroportin and iron retention in these cells. Transient transfection experiments using a ferroportin/EmGFP fusion protein construct demonstrated that LPS inducible hepcidin expression in THP-1 monocytes resulted in internalization and degradation of ferroportin. Transfection of monocytes with siRNA directed against hepcidin almost fully reversed this lipopolysaccharide-mediated effect. Using ferroportin mutation constructs, we found that ferroportin is mainly targeted by hepcidin when expressed on the cell surface. Our results suggest that ferroportin expression in inflammatory monocytes is negatively affected by autocrine formation of hepcidin, thus contributing to iron sequestration within monocytes as found in ACD.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 512-512
Author(s):  
Lan Lin ◽  
Y. Paul Goldberg ◽  
Tomas Ganz

Abstract Human genetic studies identified HJV (also called HFE2) as the major cause for juvenile hemochromatosis (JH). Patients with HJV hemochromatosis have low urinary levels of hepcidin, the principal iron-regulatory hormone secreted by the liver. We attempted to establish the specific roles of HJV in iron metabolism, especially its relationship with hepcidin. Translation of the genomic sequence indicated a C-terminal GPI anchor for the protein product of HJV, hemojuvelin. This suggested that hemojuvelin may have either a soluble or a cell-associated form. In human hepatoma cell line Hep3B, knockdown of cellular HJV by siRNA decreased hepcidin expression, independently of the IL-6 pathway. Intriguingly, the addition of recombinant soluble hemojuvelin (rs-hemojuvelin) also suppressed hepcidin expression in primary human hepatocytes, in a log-linear dose-dependent manner, suggesting competition between soluble and cell-associated forms of hemojuvelin. Soluble hemojuvelin was found in human sera at concentrations similar to those required to suppress hepcidin mRNA in vitro. In cells engineered to express hemojuvelin, soluble hemojuvelin release was progressively inhibited by increasing iron or holotransferrin concentrations. Our study suggests that soluble and cell-associated hemojuvelin reciprocally regulate hepcidin mRNA levels, and that hemojuvelin may serve as a molecular messenger for iron homeostasis. Even in hepatocytes stimulated with IL-6, we observed strong suppression of hepcidin mRNA by rs-hemojuvelin. If rs-hemojuvelin or its active fragments also suppress hepcidin production in vivo, they could be used to alleviate anemia of inflammation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2043-2043
Author(s):  
Andrea U. Steinbicker ◽  
Ashley J. Vonner ◽  
Chetana Sachidanandan ◽  
Lisa Lohmeyer ◽  
David T. Scadden ◽  
...  

Abstract Abstract 2043 Introduction: Anemia of chronic disease (ACD) describes anemia associated with diverse chronic inflammatory, infectious, or neoplastic processes. These conditions are frequently associated with increased circulating levels of inflammatory cytokines such as interleukin 6 (IL-6). IL-6 regulates expression of the hormone hepcidin, which inhibits the release of iron from hepatocytes, macrophages, and enterocytes into the circulation. In addition to IL-6, hepcidin gene expression is known to be transcriptionally regulated by bone morphogenetic protein (BMP) signaling. Hypothesis: We hypothesized that BMP signaling is required for the induction of hepcidin gene expression by IL-6 and plays a critical role in the pathogenesis of ACD. Methods: We used a turpentine-dependent model of ACD in mice. Mice were challenged with weekly subcutaneous injections of turpentine, which induces anemia in an IL-6 dependent manner. This model was studied to determine hepcidin gene expression and rescue ACD using BMP inhibition. Moreover, we examined hepcidin gene expression in zebrafish injected with Pseudomonas aeruginosa, and in transgenic zebrafish overexpressing human IL-6. The regulation of hepcidin gene expression was also studied in the human hepatocarcinoma cell line (HepG2). Results: Injections of mice with IL-6 (0.8 μg/g ip) increased hepatic hepcidin mRNA levels expression at 24 hours and decreased serum iron concentrations. Both effects were prevented by a small molecule BMP type I receptor kinase inhibitor, LDN-193189, or protein BMP antagonists. Weekly turpentine injections induced microcytic anemia after 3 weeks with a decrease in hemoglobin levels from 12.8±0.3 to 9.7±1.7 g/dL (*p<0.01). Concurrent treatment with LDN-193189 prevented turpentine-induced anemia and microcytosis (*p<0.01 for both). In mice challenged with turpentine for 6 weeks, treatment with LDN-193189, beginning after anemia was established at week 3, led to an increase in hemoglobin levels at week 6 (10.9±0.1 vs 9.5±0.2 g/dL, LDN193189 vs vehicle, respectively; *p<0.05). In zebrafish, microinjection with Pseudomonas aeruginosa or overexpression of human IL-6 induced hepatic hepcidin expression, an effect which was blocked by LDN-193189. Incubation of HepG2 cells with IL-6 (100 ng/ml) increased hepcidin mRNA levels 2 to 5 fold. Pretreatment with LDN-193189, or recombinant protein BMP antagonists such as noggin, abrogated the induction of hepcidin expression by IL-6. Incubation of HepG2 cells with BMP6 (2.5 to 10 ng/ml) modestly increased hepcidin mRNA levels. However, the combination of IL-6 and BMP6 synergistically increased hepcidin gene expression (*p<0.05). Conclusion: BMP signaling appears to play a critical role in the pathogenesis of anemia in a mouse ACD model. Our findings support the concept that BMP signaling is required for the induction of hepcidin gene expression by IL-6 in vitro and in vivo. Moreover, manipulation of BMP signaling represents a potentially novel therapeutic approach to the treatment of anemia associated with inflammation. Disclosures: Steinbicker: Deutsche Forschungsgemeinschaft DFG: Research Funding. Scadden:Fate Therapeutics: Consultancy, Equity Ownership, Patents & Royalties. Peterson:Massachusetts General Hospital Executive Committee on Research and NIDDK 1R01DK082971: Research Funding. Bloch:Massachusetts General Hospital Executive Committee on Research and NIDDK 1R01DK082971: Research Funding. Yu:Harvard Stem Cell Institute Seed Grant and the Howard Hughes Medical Institute Early Career Physician-Scientist Award: Honoraria, Research Funding; NHLBI 5K08HL079943: Research Funding.


Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 376-381 ◽  
Author(s):  
Hiroshi Kawabata ◽  
Robert E. Fleming ◽  
Dorina Gui ◽  
Seo Y. Moon ◽  
Takayuki Saitoh ◽  
...  

Abstract Transferrin receptor 2 (TfR2) is a membrane glycoprotein that mediates cellular iron uptake from holotransferrin. Homozygous mutations of this gene cause one form of hereditary hemochromatosis in humans. We recently reported that homozygous TfR2(Y245X) mutant mice, which correspond to the TfR2(Y250X) mutation in humans, showed a phenotype similar to hereditary hemochromatosis. In this study, we further analyzed the phenotype as well as iron-related gene expression in these mice by comparing the TfR2-mutant and wild-type siblings. Northern blot analyses showed that the levels of expression of hepcidin mRNA in the liver were generally lower, whereas those of duodenal DMT1, the main transporter for uptake of dietary iron, were higher in the TfR2-mutant mice as compared to the wild-type siblings. Expression of hepcidin mRNA in the TfR2 mutant mice remained low even after intraperitoneal iron loading. In isolated hepatocytes from both wild-type and TfR2 mutant mice, interleukin-6 and lipopolysaccharide each induced expression of hepcidin mRNA. These results suggest that up-regulation of hepcidin expression by inflammatory stimuli is independent of TfR2 and that TfR2 is upstream of hepcidin in the regulatory pathway of body iron homeostasis. (Blood. 2005;105:376-381)


Blood ◽  
2005 ◽  
Vol 106 (8) ◽  
pp. 2884-2889 ◽  
Author(s):  
Lan Lin ◽  
Y. Paul Goldberg ◽  
Tomas Ganz

Abstract Mutations in a recently identified gene HJV (also called HFE2, or repulsive guidance molecule C, RgmC) are the major cause of juvenile hemochromatosis (JH). The protein product of HJV, hemojuvelin, contains a C-terminal glycosylphosphatidylinositol anchor, suggesting that it can be present in either a soluble or a cell-associated form. Patients with HJV hemochromatosis have low urinary levels of hepcidin, the principal iron-regulatory hormone secreted by the liver. However, neither the specific role of hemojuvelin in maintaining iron homeostasis nor its relationship to hepcidin has been experimentally established. In this study we used hemojuvelin-specific siRNAs to vary hemojuvelin mRNA concentration and showed that cellular hemojuvelin positively regulated hepcidin mRNA expression, independently of the interleukin 6 pathway. We also showed that recombinant soluble hemojuvelin (rs-hemojuvelin) suppressed hepcidin mRNA expression in primary human hepatocytes in a log-linear dose-dependent manner, suggesting binding competition between soluble and cell-associated hemojuvelin. Soluble hemojuvelin was found in human sera at concentrations similar to those required to suppress hepcidin mRNA in vitro. In cells engineered to express hemojuvelin, soluble hemojuvelin release was progressively inhibited by increasing iron concentrations. We propose that soluble and cell-associated hemojuvelin reciprocally regulate hepcidin expression in response to changes in extracellular iron concentration. (Blood. 2005;106:2884-2889)


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 164-164
Author(s):  
Karin E. Finberg ◽  
Rebecca L. Whittlesey ◽  
Stefano Rivella ◽  
Nancy C. Andrews

Abstract Abstract 164 TMPRSS6, a transmembrane protease produced by the liver, is an essential regulator of mammalian iron homeostasis. TMPRSS6 inhibits the expression of hepcidin, a circulating peptide that decreases intestinal iron absorption and macrophage iron release, by down-regulating hepatic BMP/SMAD signaling for hepcidin production. Accordingly, TMPRSS6 mutations result in elevated hepcidin levels, impaired absorption of dietary iron, and systemic iron deficiency. Interestingly, in congenital iron loading anemias such as β-thalassemia, hepcidin levels are inappropriately low relative to body iron stores, a finding that has been postulated to result from the production of a hepcidin-repressing factor in the setting of ineffective erythropoiesis. Here we asked if Tmprss6 is required to achieve the hepcidin suppression present in Hbbth3/+ mice, a model of β-thalassemia intermedia. To test this, we bred Hbbth3/+ mice to mice harboring a targeted disruption of the Tmprss6 serine protease domain. We generated mice of various Hbb-Tmprss6 genotype combinations and compared parameters of systemic iron homeostasis at 8 weeks of age. Consistent with prior studies of Hbbth3/+ mice, Hbbth3/+ mice harboring 2 wild-type Tmprss6 alleles (Hbbth3/+Tmprss6+/+ mice) showed non-heme iron concentrations of liver, spleen, and kidney that were significantly elevated compared to wild-type controls. Homozygosity for Tmprss6 mutation, however, ameliorated the iron overload phenotype of Hbbth3/+ mice and led to systemic iron deficiency. Tissue non-heme iron concentrations were markedly reduced in Hbbth3/+Tmprss6−/− mice as compared to Hbbth3/+Tmprss6+/+ mice and were similar to levels observed in Tmprss6−/− mice harboring 2 wild-type Hbb alleles. Hbbth3/+Tmprss6−/− mice had hemoglobin levels similar to the thalassemic levels present in Hbbth3/+Tmprss6+/+ mice. However, compared to Hbbth3/+Tmprss6+/+ mice, Hbbth3/+Tmprss6−/− mice showed markedly reduced erythrocyte mean corpuscular volume and serum transferrin saturation, as well as increased red blood cell count. Interestingly, homozygous loss of Tmprss6 in Hbbth3/+ mice also led to marked reduction in splenomegaly and improvement in peripheral red blood cell morphology. Consistent with prior studies of Hbbth3/+ mice, Hbbth3/+Tmprss6+/+ mice displayed hepatic hepcidin mRNA levels that were similar to wild-type and were, therefore, inappropriately decreased relative to their increased hepatic iron stores. Hepatic mRNA levels of Bmp6, encoding a Bmp ligand that is transcriptionally regulated by iron and acts as a key regulator of hepcidin expression in vivo, were significantly elevated in Hbbth3/+Tmprss6+/+ mice, suggesting that their relative hepcidin deficiency does not result from impaired Bmp6 transcription. While Hbbth3/+Tmprss6+/+ mice showed suppressed hepcidin levels, homozygous loss of Tmprss6 alleviated their hepcidin suppression and led to elevated hepcidin mRNA levels similar to Tmprss6−/− mice harboring 2 wild-type Hbb alleles. Hbbth3/+Tmprss6−/− mice also showed elevated hepatic mRNA encoding Id1, another transcriptional target of Bmp/Smad signaling. These findings indicate that Tmprss6 is required to achieve the suppression of hepatic hepcidin expression that underlies systemic iron overload in Hbbth3/+ mice. Furthermore, our results demonstrate that, by up-regulating hepatic Bmp/Smad signaling for hepcidin production, genetic loss of Tmprss6 induces profound changes in systemic iron homeostasis in this thalassemia model. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (16) ◽  
pp. 3336-3344 ◽  
Author(s):  
Anu Laitala ◽  
Ellinoora Aro ◽  
Gail Walkinshaw ◽  
Joni M. Mäki ◽  
Maarit Rossi ◽  
...  

AbstractAn endoplasmic reticulum transmembrane prolyl 4-hydroxylase (P4H-TM) is able to hydroxylate the α subunit of the hypoxia-inducible factor (HIF) in vitro and in cultured cells, but nothing is known about its roles in mammalian erythropoiesis. We studied such roles here by administering a HIF-P4H inhibitor, FG-4497, to P4h-tm−/− mice. This caused larger increases in serum Epo concentration and kidney but not liver Hif-1α and Hif-2α protein and Epo mRNA levels than in wild-type mice, while the liver Hepcidin mRNA level was lower in the P4h-tm−/− mice than in the wild-type. Similar, but not identical, differences were also seen between FG-4497–treated Hif-p4h-2 hypomorphic (Hif-p4h-2gt/gt) and Hif-p4h-3−/− mice versus wild-type mice. FG-4497 administration increased hemoglobin and hematocrit values similarly in the P4h-tm−/− and wild-type mice, but caused higher increases in both values in the Hif-p4h-2gt/gt mice and in hematocrit value in the Hif-p4h-3−/− mice than in the wild-type. Hif-p4h-2gt/gt/P4h-tm−/− double gene-modified mice nevertheless had increased hemoglobin and hematocrit values without any FG-4497 administration, although no such abnormalities were seen in the Hif-p4h-2gt/gt or P4h-tm−/− mice. Our data thus indicate that P4H-TM plays a role in the regulation of EPO production, hepcidin expression, and erythropoiesis.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Marina Bayeva ◽  
Arineh Khechaduri ◽  
Hossein Ardehali

Introduction: Iron is essential for normal heart function, and disruption of iron homeostasis can lead to cardiomyopathy. However, our understanding of iron regulation on a cellular level is incomplete, with a single model involving iron regulatory proteins (IRP) described to date. Here, we report the existence of a parallel iron regulatory pathway by energy sensor mTOR and inflammatory mediator trsitetraprolin (TTP). Results: To examine the role of energy metabolism in the regulation of cellular iron, we used rapamycin to inhibit mTOR pathway in H9c2 cardiac myoblasts and mouse embryonic fibroblasts (MEFs). Rapamycin treatment significantly elevated cellular iron content through a coordinated reduction in iron import (transferrin receptor, TfR1) and iron export (ferroportin, Fpn1), leading to deceleration of iron flux and net iron accumulation. We found that the primary action of rapamycin was to reduce TfR1 through destabilization of its mRNA. Surprisingly, this effect was not mediated by IRP1/2, the “classical” sensors of cellular iron levels, as TfR1 mRNA levels were significantly reduced by rapamycin even in cells with the genetic knockout of IRP1 and IRP2. In yeast, a tandem zinc finger (TZF) protein Cth2 was found to conserve cellular iron in states of deficiency by preferentially degrading mRNA of non-essential iron-containing proteins thus reducing iron requirements and liberating iron for vital functions. We found that the mammalian TZF protein TTP, an established mediator of inflammation, was greatly induced by iron deficiency, enhanced degradation of iron-containing proteins, and complemented Cth2 deletion in yeast, thus establishing TTP as the functional homolog of Cth2 in mammalian iron regulation. Finally, TTP levels were increased by rapamycin in IRP1/2-independent manner, and genetic knockout of TTP in MEFs significantly reversed the effects of rapamycin on TfR1 mRNA levels and stability. These findings establish TTP as the mediator of iron-regulatory effects of mTOR and provide a novel link between energy metabolism, inflammation and iron regulatory pathways. Conclusions: We identified a novel pathway of cellular iron regulation by mTOR and TTP, which complements the “classical” IRP1/2 model.


2015 ◽  
Vol 396 (1) ◽  
pp. 81-93 ◽  
Author(s):  
Marit Stirnberg ◽  
Eva Maurer ◽  
Katharina Arenz ◽  
Anne Babler ◽  
Willi Jahnen-Dechent ◽  
...  

Abstract Matriptase-2 is a type II transmembrane serine protease controlling the expression of hepcidin, the key regulator of iron homeostasis. By cleaving hemojuvelin, matriptase-2 suppresses bone morphogenetic protein/sons of mothers against decapentaplegic signaling. So far, the only known putative substrates of matriptase-2 are hemojuvelin and matriptase-2 itself. In this study, fetuin-A (α2-Heremans-Schmid glycoprotein) was identified in vitro as a substrate of matriptase-2. The protease–substrate interaction was validated by isolating matriptase-2 via the affinity to fetuin-A. Fetuin-A is a liver-derived plasma protein with multiple functions, which is proteolytically processed to yield a disulfide-linked two-chain form. In co-transfected cells, a matriptase-2-dependent conversion of unprocessed fetuin-A into a two-chain form was detected. Conversely, downregulation of endogenously expressed matriptase-2 stabilized fetuin-A. Arg and Lys residues located within the 40 residue spanning connecting peptide of fetuin-A were identified as cleavage sites for matriptase-2. Analysis of hepcidin expression revealed an inductive effect of fetuin-A, which was abolished by matriptase-2. Fetuin-A deficiency in mice resulted in decreased hepcidin mRNA levels. These findings implicate a role of fetuin-A in iron homeostasis and provide new insights into the mechanism of how matriptase-2 might modulate hepcidin expression.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2880-2880
Author(s):  
Maria-Eliana Lai ◽  
Stefania Vacquer ◽  
Maria Paola Carta ◽  
Claudia Mulas ◽  
Pierluigi Cocco ◽  
...  

Abstract Thalassemia is an inherited blood disease characterized by low levels or absence of normal globin chains. Severe forms of thalassemia, thalassemia major (TM), require regular blood transfusions, the main cause of secondary hemosyderosis. However, iron overload is a potential complication, even in patients (pts) with thalassemia intermedia (TI), who do not require transfusions. Among them, iron overload is mainly the result of an excessive absorption of dietary iron, caused by a down-regulation of hepcidin, an hepatic hormone that acts as a major regulator of systemic iron homeostasis. Very low mRNA levels of hepcidin have been reported in urine as well as in liver biopsies from patients with TI. It has been also reported that, interleukin-1 alpha (IL-1α) stimulates hepcidin transcription, raising the question as to whether a down-regulation of this cytokine may be responsible, at least partially, for the excessive iron absorption occurring in patients with TI. Here, we assessed whether IL-1α was involved in hepcidin regulation in β-thalassemia. Peripheral blood mononuclear cells (PBMCs) were isolated from 6 TM pts, 8 TI pts and 6 controls. mRNA was obtained from PBMCs by RT-PCR. Hepcidin mRNA levels were reduced in both TM and TI pts when compared to the age matched normal controls. Neverthless, hepcidin mRNA levels were significantly lower in TI pts, as compared to TM pts receiving regular blood transfusions. Among TI pts lower hepcidin mRNA level was associated with lower level of IL-α. Tumor necrosis factor alpha (TNF-α) does not seem to be involved in the regulation of hepcidin transcription. Interestingly, the levels of mRNA expression of acyl-CoA-cholesterol acyltransferase (ACAT), the enzyme responsible for intracellular cholesterol ester accumulation, and thus, for atherosclerotic plaque formation were strongly induced in PBMCs in TI pts. These results suggest that PBMCs hepcidin and IL-1-α measurements could possibly be used in the future as simple, ease and sensible diagnostic tools for the detection of iron overload in patients with thalassemia. ACAT expression may even be used as therapeutic target in preventing atherosclerotic complications such as pulmonary thromboembolism, cerebral thrombosis, and leg ulcers. frequently occurring in such patients.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 4142-4148 ◽  
Author(s):  
Igor Theurl ◽  
Verena Mattle ◽  
Markus Seifert ◽  
Mariagabriella Mariani ◽  
Christian Marth ◽  
...  

Anemia of chronic disease (ACD) is frequently found in patients with chronic immune activation. Since most studies on ACD pathophysiology were performed with cell culture or animal models but not in humans, we examined 37 ACD patients suffering from autoimmune diseases or infections, 10 subjects with iron-deficiency anemia (IDA), 10 anemic patients with hereditary spherocytosis (HS), and 27 age-matched controls. Although hemoglobin concentrations were comparable between ACD and IDA patients, the latter presented with significantly higher serum erythropoietin concentrations than ACD patients. The significant negative correlation between erythropoietin and hemoglobin levels observed in IDA patients was also found in a group of anemic but not hypoferremic hereditary spherocytosis subjects, but not in ACD patients. Increased serum concentrations of the hepcidin precursor prohepcidin were paralleled by a decreased expression of the iron exporter ferroportin in circulating monocytes of ACD patients. In the latter cells, increased amounts of the iron storage protein ferritin and a reduced activity of iron-regulatory protein indicated monocyte iron accumulation. Our data indicate that hypoferremia in ACD may result from downregulation of ferroportin expression by hepcidin and cytokines with subsequent iron retention in monocytes. Together with a diminished erythropoietin formation, the impaired iron recirculation from monocytes may be central in the pathophysiology of ACD in humans.


Sign in / Sign up

Export Citation Format

Share Document