Impaired CD163-mediated hemoglobin-scavenging and severe toxic symptoms in patients treated with gemtuzumab ozogamicin

Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1510-1514 ◽  
Author(s):  
Maciej Bogdan Maniecki ◽  
Henrik Hasle ◽  
Lennart Friis-Hansen ◽  
Birgitte Lausen ◽  
Ove Juul Nielsen ◽  
...  

Abstract We describe a novel syndrome of severe toxic symptoms during intravascular hemolysis due to impaired hemoglobin scavenging in 2 children with acute myeloid leukemia undergoing CD33-directed therapy with the immunotoxin gemtuzumab ozogamicin (GO). A simultaneous high plasma hemoglobin, haptoglobin, and low bilirubin after septicemia-induced intravascular hemolysis indicated abrogated clearance of haptoglobin-hemoglobin complexes. This was further supported by low levels of plasma soluble CD163 and a concordant low number of CD163-expressing monocytes. We show that CD163 positive monocytes and macrophages from liver, spleen, and bone marrow coexpress CD33, thus suggesting that the GO-induced cellular cytotoxicity of CD33 positive cells eradicates a significant part of the CD163 positive monocytes and macrophages. The risk of severe toxic symptoms from plasma hemoglobin should be considered after CD33-targeted chemotherapy when the disease is complicated by a pathologic intravascular hemolysis. Furthermore, the cases provide further circumstantial evidence of a key role of (CD163-expressing) monocytes/macrophages in plasma hemoglobin clearance in vivo.

Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1295-1302 ◽  
Author(s):  
Roland B. Walter ◽  
Brian W. Raden ◽  
Darren M. Kamikura ◽  
Jonathan A. Cooper ◽  
Irwin D. Bernstein

AbstractGemtuzumab ozogamicin (GO; Mylotarg), a novel immunoconjugate used for treatment of acute myeloid leukemia (AML), contains the humanized anti-CD33 antibody (hP67.6) as a carrier to facilitate cellular uptake of the toxic calicheamicin-γ1 derivative. By use of lentivirus-mediated gene transfer to manipulate CD33 expression in myeloid cell lines that normally lack CD33 (murine 32D cells) or have very low levels of CD33 (human OCI-AML3 and KG-1a cells), we here show a quantitative relationship between CD33 expression and GO-induced cytotoxicity. The CD33 cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) control internalization of antibody bound to CD33. Disruption of the ITIMs by introduction of point mutations not only prevented effective internalization of antibody-bound CD33 but also significantly reduced GO-induced cytotoxicity. Together, our data imply a pivotal role of both the number of CD33 molecules expressed on the cell surface and the amount of internalization of CD33 following antibody binding for GO-induced cytotoxicity and suggest novel therapeutic approaches for improvement of clinical outcome of patients treated with GO.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3684-3684
Author(s):  
Maciej B. Maniecki ◽  
Henrik Hasle ◽  
Lennart Friis-Hansen ◽  
Birgitte Lausen ◽  
Ove J. Nielsen ◽  
...  

Abstract Hemoglobin liberated to plasma during intravascular hemolyses is rapidly bound to haptoglobin. The hemoglobin-haptoglobin complexes undergo endocytosis through the monocyte/macrophage specific scavenger receptor for hemoglobin (CD163). This mechanism protects against oxidative and NO-scavenging adverse effects of free hemoglobin. In this study, we describe a novel syndrome of severe intravascular hemolysis and serious hemolytic crisis due to impaired hemoglobin scavenging in three acute myeloid leukemia patients following CD33-directed therapy with the immunotoxin gemtuzumab ozogamicin (GO, Mylotarg™). A synchronous high free hemoglobin, haptoglobin, and low bilirubin after septicemia-induced intravascular hemolysis indicated abrogated clearance of haptoglobin-hemoglobin complexes. This was further supported by low levels of plasma soluble CD163 and a concordant low number of CD163-expressing monocytes. We show that CD163 positive monocytes and bone marrow macrophages coexpress CD33 thus suggesting that the GO-induced cellular cytotoxicity of CD33 positive cells eradicates a significant part of the CD163 positive monocytes and macrophages. The patients had severe inflammation and serious organ failure symptoms that may be a direct effect of the persistent high level of free hemoglobin. One of the patients had a fatal outcome whereas, the other two recovered from the hemolytic episode, and the peripheral blood CD163 expression returned to normal. The risk of a serious hemolytic crisis should be considered following CD33-targeted chemotherapy. Furthermore, the cases provide circumstantial evidence of a key role of CD163 plasma hemoglobin clearance in vivo.


Blood ◽  
2013 ◽  
Vol 121 (4) ◽  
pp. 638-642 ◽  
Author(s):  
Yasuhiko Kamikubo ◽  
R. Katherine Hyde ◽  
Ling Zhao ◽  
Lemlem Alemu ◽  
Cecilia Rivas ◽  
...  

Abstract The C-terminus of CBFβ-SMMHC, the fusion protein produced by a chromosome 16 inversion in acute myeloid leukemia subtype M4Eo, contains domains for self-multimerization and transcriptional repression, both of which have been proposed to be important for leukemogenesis by CBFβ-SMMHC. To test the role of the fusion protein's C-terminus in vivo, we generated knock-in mice expressing a C-terminally truncated CBFβ-SMMHC (CBFβ-SMMHCΔC95). Embryos with a single copy of CBFβ-SMMHCΔC95 were viable and showed no defects in hematopoiesis, whereas embryos homozygous for the CBFβ-SMMHCΔC95 allele had hematopoietic defects and died in mid-gestation, similar to embryos with a single-copy of the full-length CBFβ-SMMHC. Importantly, unlike mice expressing full-length CBFβ-SMMHC, none of the mice expressing CBFβ-SMMHCΔC95 developed leukemia, even after treatment with a mutagen, although some of the older mice developed a nontransplantable myeloproliferative disease. Our data indicate that the CBFβ-SMMHC's C-terminus is essential to induce embryonic hematopoietic defects and leukemogenesis.


Blood ◽  
1975 ◽  
Vol 46 (2) ◽  
pp. 209-218 ◽  
Author(s):  
S Murphy ◽  
FH Gardner

Abstract Containers constructed of polyvinylchloride (PVC) are used for the storage of platelet concentrates (PC) for transfusion, At 22 degrees C, pH often falls to such low levels (pH is less that 6.0) that viability is lost. Far lesser degrees of pH fall are observed in bags constructed of polyethylene (PE). In this study, pH, PO2, PCO2, platelet count, lactate concentration, microscopic morphology, and viability after 51- chromium labeling were evaluated during storage at 22 degrees C under a variety of circumstances. The results indicate that (1) pH falls because of the generation of lactic acid by platelet glycolysis and, under some circumstances, the retention of CO2. (2) Rate of pH fall is, therefore, roughly proportional to the platelet count. (3) PE is more permeable to gases, thereby allowing CO2 escape from and easier O2 entry into the stored PC; the higher O2 tensions suppress glycolysis by the Pasteur effect. (4) Adequate agitation and container size are critical if the beneficial effect of PE is to be obtained. (5) In general, platelets stored in PE containers have excellent viability in vivo although CO2 escape can result in elevations in pH which are deleterious. (6) Storage in a 10% CO2 atmosphere prevents these deletrrious pH elevations without otherwise impairing platelet viability; (7) Results similar to those achieved with PE can be achieved with PVC if this material is made thinner to allow easier penetration of gases.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Chong Wang ◽  
Lingling Li ◽  
Mengya Li ◽  
Weiqiong Wang ◽  
Yanfang Liu ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are biomarkers participating in multiple disease development including acute myeloid leukemia (AML). Here, we investigated molecular mechanism of X Inactive-Specific Transcript (XIST) in regulating cellular viability, apoptosis and drug resistance in AML. Methods XIST, miR-29a and myelocytomatosis oncogene (MYC) expression in AML bone marrow cells collected from 62 patients was evaluated by RT-qPCR and Western blot analysis. Besides, the relationship among XIST, miR-29a and MYC was analyzed by dual luciferase reporter assay, RIP, and RNA pull down assays. AML KG-1 cells were treated with anti-tumor drug Adriamycin. The role of XIST/miR-29a/MYC in cellular viability, apoptosis and drug resistance in AML was accessed via gain- and loss-of-function approaches. At last, we evaluated role of XIST/miR-29a/MYC on tumorigenesis in vivo. Results XIST and MYC were up-regulated, and miR-29a was down-regulated in AML bone marrow cells. Silencing XIST inhibited cellular activity and drug resistance but promoted cellular apoptosis of KG-1 cells by down-regulating MYC. XIST inhibited miR-29a expression to up-regulate MYC. Moreover, silencing XIST inhibited tumorigenesis of AML cells in vivo. Conclusions Overall, down-regulation of XIST decreased MYC expression through releasing the inhibition on miR-29a, thereby reducing drug resistance, inhibiting viability and promoting apoptosis of AML cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3286-3286 ◽  
Author(s):  
Edward D. Ball ◽  
Bruno C. Medeiros ◽  
Larissa Balaian ◽  
Tracy Roque ◽  
Sue Corringham ◽  
...  

Abstract Abstract 3286 Acute myeloid leukemia (AML) cells express the cell surface antigen CD33 that is a down-regulator of cell growth when ligated by a monoclonal antibody in a Syk-dependent manner. The response of AML cells to gemtuzumab ozogamicin (GO) also depends on Syk and SHP-1 expression (Leukemia 20:2093, 2006). The hypomethylating agent 5-azacytidine (5-aza) induced re-expression of Syk in some cases, therefore increasing the sensitivity of originally Syk-negative, non-responsive cells to CD33 ligation to levels of Syk-positive cells. We initiated a phase 1/2 clinical trial examining if treatment with 5-aza prior to GO is safe, efficacious, and whether in vivo responses to GO correlated with Syk expression and induction by 5-aza. Here we update the interim results of this trial (NCI registration number NCT00766116). In Phase I, 14 patients (9 males, 5 females), age range: 39–82 years [median: 66]) were treated with 75mg/m2 5-aza daily and GO in a dose-escalation manner, 4 cohorts total. The first cohort (n=3) received 5-aza for 2 days followed by GO at 3 mg/m2 on days 3 and 17; the second cohort (n=3) received 5-aza for 2 days followed by GO at 6 mg/m2 on days 3 and 17; the third cohort (n=4) received 5-aza for 4 days followed by GO at 6 mg/m2 on days 5 and 19; and the fourth cohort (n=4) at 5-aza for 6 days followed by GO at 6 mg/m2 on days 7 and 21. There were no responses in the first 2 cohorts. One patient in cohort 3 achieved CR, and 2 in cohort 4 achieved CR and CRp. Adverse events (≥ Grade 3) included febrile neutropenia 36%, infection 14%, pancytopenia 7%, dyspnea 7%, and retinopathy 7%. Average length on study (n=14) was 45 days with a mortality rate of 14% (unrelated to treatment). No dose-limiting toxicities were encountered in phase I, therefore the MTD is the dose in cohort 4. The overall response rate in evaluable patients in phase I (n=11) is 27%. Average time to ANC recovery (n=6): 30 days (range 15–42, median 33 days). In Phase II, 10 patients (5 males, 5 females), age range: 29–64 years (median 60) were treated at the MTD: 5-aza for 6 days and GO at 6 mg/m2 on days 7 and 21. 8 patients were in 1st relapse, 1 in 2nd and 1 in 3rd. There were 3 responders (2 CR, 1 CRp) in this phase, all in 1st relapse at baseline. Adverse events (≥ Grade 3) include febrile neutropenia 50%, infection 20%, increased LFTs 10%, thrombocytopenia 10%, dyspnea 10%, wheezing 10%, mucositis 10%, cough 10%, and hypoalbuminemia 10%. The average length on study (n=10) was 40 days with a mortality rate of 10% (not related to study treatment). Average time to ANC recovery in phase II (n=2): 15 days (range 12–17, median 15) with an overall response rate in evaluable patients (n=7) of 43%. The ORR for phase I/II (n=18) is 33%. 21 of the 24 patient sample pairs have been analyzed for Syk and SHP-1 expression (one patient did not have a baseline sample). Prior to therapy, Syk was expressed in 16 of 20 cases. After 5-aza treatment, Syk was re-expressed in all 4 negative cases, and increased over baseline in one case that was previously Syk +. SHP-1 was positive in 17 of the 20 cases and was re-expressed in all 3 negative cases. Leukemia cells from patients who achieved CR were Syk+ in 3 of 5 cases (the 6th hasn't been analyzed). Syk was re-expressed in the two negative cases after 5-aza. SHP-1 was expressed in 4 of 5 cases at baseline, and re-expressed in the one negative case after 5-aza. In vitro we analyzed inhibition of proliferation (for patients 1–6) or colony formation (for patients 7–24) induced by 5-aza and GO. 5-aza alone allowed 62.3+/−3.5 survival of leukemia cells and GO alone allowed survival of 59.5+/−1.7 leukemia cells. However, exposure to both agents resulted in a survival rate of 24.8+/−1.6 (P<0.05, Students t-test). We also compared pre- and post 5-aza samples from the same patients: in all cases 5-aza treatment increased the GO-mediated cytotoxicity from 39.4+/−3.1 to 66.8+/−2.4 ((P<0.05, Students t-test). These data show that in vivo exposure to 5-aza can induce the expression of two biomarkers involved in the response to GO. This ongoing study indicates the combination of 5-aza and GO is well-tolerated, that Syk and SHP-1 are modulated by 5-aza in vivo, and that complete responses have been noted with this combination. Disclosures: Ball: Celgene: Equity Ownership, Research Funding. Off Label Use: Will discuss use of 5-azacytidine (Vidaza) for treatment of relapsed AML in combination with Mylotarg (on label, but only as monotherapy). Medeiros:Celgene: Research Funding, Speakers Bureau; Novartis: Research Funding, Speakers Bureau; Merck: Research Funding; Genentech: Research Funding; Alexion: Speakers Bureau.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 915-915
Author(s):  
Stuart A Rushworth ◽  
Lyubov Zaitseva ◽  
Megan Y Murray ◽  
Matthew J Lawes ◽  
David J MacEwan ◽  
...  

Abstract Introduction Despite recent significant progress in the understanding of the biology of acute myeloid leukemia (AML) the clinical outcomes for the majority of patients diagnosed with AML presently remain poor. Consequently, there is an urgent need to identify pharmacological strategies in AML, which are not only effective but can be tolerated by the older, less well patient. Recently our group and others have shown that there is high Bruton’s Tyrosine Kinase (BTK) phosphorylation and RNA expression in AML. Moreover, our recent study described for the first time that ibrutinib and BTK-targeted RNA interference reduced factor-induced proliferation of both AML cell lines and primary AML blasts, as well as reducing AML blast adhesion to bone marrow stromal cells. Inhibition of BTK has been shown to regulate chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma cell migration by inhibiting SDF1 (stromal derived factor 1) induced CXCR4 regulated cell trafficking. Here we report that in human AML ibrutinib in addition functions in a similar way to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. Methods To investigate the role of BTK in regulating AML migration we used both pharmacological inhibitor ibrutinib and genetic knockdown using a lentivirus mediated BTK targeted miRNA in primary AML blasts and AML cell lines. We examined migration of AML blasts and AML cells to SDF-1 using Transwell permeable plates with 8.0µM pores. Western blotting was used to examine the role of SDF-1 in regulating BTK, AKT and MAPK activation in primary AML blasts. Results We initially examined the expression of CXCR4 in human AML cell lines and found that 4/4 cell lines were positive for CXCR4 expression. Next we examined the effects of ibrutinib on the migration of the AML cell lines U937, MV4-11, HL60 and THP-1 in response to SDF1. We found that ibrutinib can inhibit the migration of all AML cell lines tested. We tested the in-vitro activity of ibrutinib on SDF-1 induced migration in a spectrum of primary AML blasts from a wide age spectrum of adult patients and across a range of WHO AML subclasses and found that ibrutinib significantly inhibits primary AML blast migration (n=12). Next we found that ibrutinib can inhibit SDF-1 induced BTK phosphorylation and downstream MAPK and AKT signalling in primary AML blast. Finally to eliminate the problems associated with off target ibrutinib activity we evaluated migration of AML cells lines using genetic inhibition of BTK. The introduction of BTK-specific miRNA dramatically inhibited the expression of BTK in THP-1 and HL60 and reduced SDF1 mediated migration confirming that BTK is involved in regulating AML migration in response to SDF1. Conclusions These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3919-3919
Author(s):  
Peilin Ma ◽  
Yuqing Sun ◽  
Jingya Wang ◽  
Weihua Song ◽  
Tao Xu ◽  
...  

Abstract Homeobox A9 (HOXA9) is a homeodomain-containing transcription factor that is essential for hematopoietic stem cell expansion and differentiation. Deregulation of HOXA9 is commonly observed in human acute myeloid leukemia (AML). About half of AML patients overexpress HOXA9 as a result of MLL rearrangements, NUP98 translocations, NPM1 mutations or CDX2/CDX4 overexpression. Despite its central importance in leukemia, the mechanism of transcriptional regulation by HOXA9 and its downstream effectors are poorly understood. HOXA9 physically interacts with MEIS1, a cofactor that greatly accelerates leukemia development in transplanted animals. Our group recently identified a number of transcription factors as HOXA9 potential collaborators by genomic profiling of HOXA9 binding sites and mass spectroscopy. One of these putative collaborators is signal transducer and activator of transcription 5 (STAT5), which coimmunoprecipitates with HOXA9. Furthermore STAT motifs extensively overlap with HOXA9 binding sites. STAT5 is important for survival, proliferation and differentiation of hematopoietic cells and constitutive activation of STAT5 has also been observed in human leukemias bearing oncogenic mutation of Jak2, Bcr-Abl, c-Kit and Flt3. FLT3 internal tandem duplication (FLT3-ITD) is observed in 25% of patients with MLL-partial tandem duplication (MLL-PTD) and is associated with HOXA9 upregulation and unfavorable prognosis. Therefore, we hypothesized that the interaction of HOXA9 and STAT5 may play a role in HOXA9-associated leukemogenesis. Treatment of human cell lines bearing MLL-AF9 and FLT3-ITD with specific FLT3 and STAT5 inhibitors showed that suppression of the constitutive activation of STAT5 significantly inhibits the hyper-proliferation of these cells. We then overexpressed FLT3-ITD or active mutation of STAT5 (STAT5 1*6) in mouse hematopoietic stem cells /progenitor cells (HSC/PCs) transduced with MLL-AF9 or HOXA9 and found that constitutively active STAT5 enhances cell proliferation in vitro. We next transduced HOXA9 into HSC/Pcs from wild type (WT) or FLT3-ITD transgenic mice and transplanted these cells into sublethally irradiated WT mice. All of these recipients developed myeloid leukemia, with recipients transplanted with FLT3-ITD (n=4) developing leukemia significantly earlier than WT controls (n=5, p<0.05), suggesting that FLT3-ITD mediated STAT5 activation enhanced HOXA9-induced leukemogenesis in vivo. To further assess the role of STAT5 in HOXA9-mediated transformation, we performed ChIP-Seq assay with HOXA9-transformed cells and identified nearly half of STAT5 binding sites (228 out of 596) colocalized with HOXA9. Most of these cobound sites are located in distal intergenic (61.0%) and intron (35.1%) regions. Five cobound regions (Il2rα, Fgf1, Pdlim5, Pim1, Fabp5) were selected and confirmed by ChIP-qPCR. To further characterize the interaction between HOXA9 and STAT5, GST pull-down assays were performed that showed that the c-terminal of HOXA9 is critical for interaction with STAT5. Overall, the findings suggest that STAT5 promotes HOXA9-induced transformation by functionally interacting with HOXA9 at HOXA9-regulated enhancers. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (5) ◽  
pp. 978-984 ◽  
Author(s):  
Henrik Hasle ◽  
Jonas Abrahamsson ◽  
Erik Forestier ◽  
Shau-Yin Ha ◽  
Jesper Heldrup ◽  
...  

Abstract There are no data on the role of postconsolidation therapy with gemtuzumab ozogamicin (GO; Mylotarg) in children with acute myeloid leukemia (AML). The NOPHO-AML 2004 protocol studied postconsolidation randomization to GO or no further therapy. GO was administered at 5 mg/m2 and repeated after 3 weeks. We randomized 120 patients; 59 to receive GO. Survival was analyzed on an intention-to-treat basis. The median follow-up for patients who were alive was 4.2 years. Children who received GO showed modest elevation of transaminase and bilirubin without signs of veno-occlusive disease. Severe neutropenia followed 95% and febrile neutropenia 40% of the GO courses. Only a moderate decline in platelet count and a minor decrease in hemoglobin occurred. Relapse occurred in 24 and 25 of those randomized to GO or no further therapy. The median time to relapse was 16 months versus 10 months (nonsignificant). The 5-year event-free survival and overall survival was 55% versus 51% and 74% versus 80% in those randomized to receive GO or no further therapy, respectively. Results were similar in all subgroups. In conclusion, GO therapy postconsolidation as given in this trial was well tolerated, showed a nonsignificant delay in time to relapse, but did not change the rate of relapse or survival (clinicaltrials.gov identifier NCT00476541).


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hanna L. M. Rajala ◽  
Veli-Jukka Anttila ◽  
Mikko Haapio ◽  
Mikko A. I. Keränen ◽  
Ulla Wartiovaara-Kautto ◽  
...  

Gemtuzumab-ozogamicin (GO) is a humanized anti-CD33 antibody, which is conjugated to a cytotoxic calicheamicin. It is used to treat acute myeloid leukemia (AML) in combination with chemotherapy. We describe here two GO-treated acute myeloid leukemia (AML) cases: both patients suffered from a toxic syndrome, which manifested as impaired hemoglobin-haptoglobin scavenging and accumulation of hemolysis-related products. Our observations and earlier reports indicated that the reaction was caused by GO-targeted destruction of CD33 + CD163+ monocytes/macrophages, which are responsible for the clearance of hemoglobin-haptoglobin complexes. The rise of plasma lactate dehydrogenase was an early sign of the reaction, and both patients had high levels of free plasma hemoglobin, but plasma haptoglobin and bilirubin levels were paradoxically normal. Symptoms included septic fever and abnormalities in cardiac tests and in the case of the first patient, severe neurological symptoms which required intensive care unit admittance. Therapeutic plasma exchanges supported the patients until the recovery of normal hematopoiesis. The symptoms may be easily confounded with infectious complications-related organ damage. Regarding the increasing use of gemtuzumab-ozogamicin and other emerging CD33-targeted cell therapies, we want to highlight this mostly unknown and probably underdiagnosed toxicity.


Sign in / Sign up

Export Citation Format

Share Document