scholarly journals IRF-4 functions as a tumor suppressor in early B-cell development

Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3798-3806 ◽  
Author(s):  
Jaime Acquaviva ◽  
Xiaoren Chen ◽  
Ruibao Ren

Interferon regulatory factor-4 (IRF-4) is a hematopoietic cell–restricted transcription factor important for hematopoietic development and immune response regulation. It was also originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. In contrast to its oncogenic function in late stages of B lymphopoiesis, expression of IRF-4 is down-regulated in certain myeloid and early B-lymphoid malignancies. In this study, we found that the IRF-4 protein levels are increased in lymphoblastic cells transformed by the BCR/ABL oncogene in response to BCR/ABL tyrosine kinase inhibitor imatinib. We further found that IRF-4 deficiency enhances BCR/ABL transformation of B-lymphoid progenitors in vitro and accelerates disease progression of BCR/ABL-induced acute B-lymphoblastic leukemia (B-ALL) in mice, whereas forced expression of IRF-4 potently suppresses BCR/ABL transformation of B-lymphoid progenitors in vitro and BCR/ABL-induced B-ALL in vivo. Further analysis showed that IRF-4 inhibits growth of BCR/ABL+ B lymphoblasts primarily through negative regulation of cell-cycle progression. These results demonstrate that IRF-4 functions as tumor suppressor in early B-cell development and may allow elucidation of new molecular pathways significant to the lymphoid leukemogenesis by BCR/ABL. The context dependent roles of IRF-4 in oncogenesis should be an important consideration in developing cancer therapies targeting IRF-4.

2002 ◽  
Vol 196 (5) ◽  
pp. 705-711 ◽  
Author(s):  
Juli P. Miller ◽  
David Izon ◽  
William DeMuth ◽  
Rachel Gerstein ◽  
Avinash Bhandoola ◽  
...  

Little is known about the signals that promote early B lineage differentiation from common lymphoid progenitors (CLPs). Using a stromal-free culture system, we show that interleukin (IL)-7 is sufficient to promote the in vitro differentiation of CLPs into B220+ CD19+ B lineage progenitors. Consistent with current models of early B cell development, surface expression of B220 was initiated before CD19 and was accompanied by the loss of T lineage potential. To address whether IL-7 receptor (R) activity is essential for early B lineage development in vivo, we examined the frequencies of CLPs and downstream pre–pro- and pro-B cells in adult mice lacking either the α chain or the common gamma chain (γc) of the IL-7R. The data indicate that although γc−/− mice have normal frequencies of CLPs, both γc−/− and IL-7Rα−/− mice lack detectable numbers of all downstream early B lineage precursors, including pre–pro-B cells. These findings challenge previous notions regarding the point in B cell development affected by the loss of IL-7R signaling and suggest that IL-7 plays a key and requisite role during the earliest phases of B cell development.


Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 210-223 ◽  
Author(s):  
Eun Ji Gang ◽  
Hye Na Kim ◽  
Yao-Te Hsieh ◽  
Yongsheng Ruan ◽  
Heather A. Ogana ◽  
...  

Abstract Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


2002 ◽  
Vol 9 (2) ◽  
pp. 86-95 ◽  
Author(s):  
Denise A. Kaminski ◽  
John J. Letterio ◽  
Peter D. Burrows

Transforming growth factor β (TGFβ) can inhibit thein vitroproliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/-mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1-pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell developmentin vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.


2018 ◽  
Vol 19 (9) ◽  
pp. 2522 ◽  
Author(s):  
Hirotake Kasai ◽  
Taku Kuwabara ◽  
Yukihide Matsui ◽  
Koichi Nakajima ◽  
Motonari Kondo

Interleukin-7 (IL-7) is essential for lymphocyte development. To identify the functional subdomains in the cytoplasmic tail of the IL-7 receptor (IL-7R) α chain, here, we constructed a series of IL-7Rα deletion mutants. We found that IL-7Rα-deficient hematopoietic progenitor cells (HPCs) gave rise to B cells both in vitro and in vivo when a wild-type (WT) IL-7Rα chain was introduced; however, no B cells were observed under the same conditions from IL-7Rα-deficient HPCs with introduction of the exogenous IL-7Rα subunit, which lacked the amino acid region at positions 414–441 (d414–441 mutant). Signal transducer and activator of transcription 5 (STAT5) was phosphorylated in cells with the d414–441 mutant, similar to that in WT cells, in response to IL-7 stimulation. In contrast, more truncated STAT5 (tSTAT5) was generated in cells with the d414–441 mutant than in WT cells. Additionally, the introduction of exogenous tSTAT5 blocked B lymphopoiesis but not myeloid cell development from WT HPCs in vivo. These results suggested that amino acids 414–441 in the IL-7Rα chain formed a critical subdomain necessary for the supportive roles of IL-7 in B-cell development.


2000 ◽  
Vol 191 (5) ◽  
pp. 781-794 ◽  
Author(s):  
Cheryl D. Helgason ◽  
Christian P. Kalberer ◽  
Jacqueline E. Damen ◽  
Suzanne M. Chappel ◽  
Nicolas Pineault ◽  
...  

In this report, we demonstrate that the Src homology 2 domain–containing inositol-5-phosphatase (SHIP) plays a critical role in regulating both B cell development and responsiveness to antigen stimulation. SHIP−/− mice exhibit a transplantable alteration in B lymphoid development that results in reduced numbers of precursor B (fraction C) and immature B cells in the bone marrow. In vitro, purified SHIP−/− B cells exhibit enhanced proliferation in response to B cell receptor stimulation in both the presence and absence of Fcγ receptor IIB coligation. This enhancement is associated with increased phosphorylation of both mitogen-activated protein kinase and Akt, as well as with increased survival and cell cycling. SHIP−/− mice manifest elevated serum immunoglobulin (Ig) levels and an exaggerated IgG response to the T cell–independent type 2 antigen trinitrophenyl Ficoll. However, only altered B cell development was apparent upon transplantation into nonobese diabetic–severe combined immunodeficient (NOD/SCID) mice. The in vitro hyperresponsiveness, together with the in vivo findings, suggests that SHIP regulates B lymphoid development and antigen responsiveness by both intrinsic and extrinsic mechanisms.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 10-10
Author(s):  
Joy Nakitandwe ◽  
Shann-Ching Chen ◽  
Noel T. Lenny ◽  
Christopher B. Miller ◽  
Xiaoping Su ◽  
...  

Abstract Abstract 10 Over 60% of pediatric B progenitor acute lymphoblastic leukemia (ALL) cases contain somatic mutations in genes regulating B cell development, with PAX5 being the most common target of mutation (>32% of cases). The transcription factor PAX5 is required for commitment and maintenance of the B lymphoid lineage. A variety of PAX5 mutations has been identified including, mono-allelic deletions, sequence mutations, internal deletions, frame-shift mutations and translocations. We have previously shown that these PAX5 mutations result in reduced transcriptional activity either as a result of haploinsufficiency or the generation of altered PAX5 isoforms with reduced DNA-binding and/or transcriptional activity. However, the direct effect of the mutations on normal B cell development remains unknown. To address this question, we assessed the ability of a series of PAX5 mutations to rescue normal B cell development in Pax5-/- bone marrow (BM) cells using a murine in vitro culture system. Whole BM or transduced cells were grown in IL-7 producing stromal-supported cultures for two weeks and then assessed for their extent of B cell differentiation using flow cytometry. Under these in vitro conditions, both Pax5+/+ and Pax5+/− BM cells differentiated to a Hardy fraction D pre-B cell stage of differentiation (CD43−/B220+/CD19+/BP1+), with only a slight decrease in the level of expression of BP1 detected in the Pax5+/− cells. By contrast, Pax5-/- cells failed to undergo significant differentiation under these in vitro growth conditions and were arrested at an early pro-B stage of development (CD43+/−/B220+/CD19−/BP1−). To assess the biological activity of the identified PAX5 mutants, we then transduced lineage-depleted BM cells from Pax5+/+, Pax5+/− and Pax5-/- mice with MSCV-based retroviral vectors expressing either wild type (WT) or mutant PAX5 followed by in vitro culture. Three classes of PAX5 mutations were assessed: DNA binding domain mutations (P80R, P34Q, and V26G), an internal deletion mutation (Δe6-8), and translocation-induced PAX5 chimeric genes (PAX5-ETV6, PAX5-FOXP1 and PAX5-ZNF521). As expected, expression of WTPAX5 resulted in full rescue of Pax5-/- cells and induced no significant effects on the ability of Pax5+/+ and +/− cells to differentiate. By contrast, PAX5 DNA-binding domain mutants resulted in only partial rescue of Pax5-/- cells, with P80R inducing B220+/CD19−/BP1−, P34Q producing B220+/CD19+ cells with weak BP1 expression, and V26G yielding CD19+/BP1+ cells with minimally reduced levels of BP1. Similarly, expression of Δe6-8 resulted in partial rescue with the expansion of B220+/CD19+/−/BP1− cells. In stark contrast, expression of the translocation encoded PAX5 fusion proteins failed to induce any evidence of rescue. Moreover, these fusion proteins induced only minimal perturbations in the ability of Pax5+/+ and +/− cells to differentiate, suggesting that these fusion proteins were weak competitive inhibitors of normal Pax5 transcriptional activity under intra-cellular conditions. To further characterize the effects of these PAX5 mutations on B cell differentiation, we next analyzed the gene expression patterns of the resultant cell populations using the Mouse Genome 430 2.0 Arrays (Affymetrix) and compared the profiles to those obtained from purified Hardy fractions from normal murine BM. The expression signatures of the Pax5-/- cells were identical to those for normal Hardy fraction A and shifted to the signature of Hardy fraction C following rescue with WTPAX5. Transduction of Pax5-/- cells with either V26G or P34Q resulted in a near complete rescue with expression signatures similar to those obtained for Hardy fractions B/C. By contrast, transduction with P80R or Δe6-8 yielded a more incomplete rescue with expression profiles that were between Hardy fractions A and B. Interestingly, a number of genes within the B cell receptor signaling pathway were altered in cells rescued by P80R and Δe6-8, including the down regulation of CD19, Btk and Blnk. In summary, our data demonstrate that leukemia-associated PAX5 mutations have a graded effect on the transcriptional network that controls normal B cell development and differentiation. Defining the differential target gene specificity of the various PAX5 mutants should provide valuable insights into the molecular mechanisms through which these genetic lesions contribute to leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 193 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Tsuneyasu Kaisho ◽  
Kiyoshi Takeda ◽  
Tohru Tsujimura ◽  
Taro Kawai ◽  
Fumiko Nomura ◽  
...  

IκB kinase (IKK) α and β phosphorylate IκB proteins and activate the transcription factor, nuclear factor (NF)-κB. Although both are highly homologous kinases, gene targeting experiments revealed their differential roles in vivo. IKKα is involved in skin and limb morphogenesis, whereas IKKβ is essential for cytokine signaling. To elucidate in vivo roles of IKKα in hematopoietic cells, we have generated bone marrow chimeras by transferring control and IKKα-deficient fetal liver cells. The mature B cell population was decreased in IKKα−/− chimeras. IKKα−/− chimeras also exhibited a decrease of serum immunoglobulin basal level and impaired antigen-specific immune responses. Histologically, they also manifested marked disruption of germinal center formation and splenic microarchitectures that depend on mature B cells. IKKα−/− B cells not only showed impairment of survival and mitogenic responses in vitro, accompanied by decreased, although inducible, NF-κB activity, but also increased turnover rate in vivo. In addition, transgene expression of bcl-2 could only partially rescue impaired B cell development in IKKα−/− chimeras. Taken together, these results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells.


1993 ◽  
Vol 13 (12) ◽  
pp. 7321-7333 ◽  
Author(s):  
Y Jacobs ◽  
C Vierra ◽  
C Nelson

A monoclonal antibody (Yae) was characterized and shown to specifically recognize E2A proteins in vivo, including the E2A-Pbx1 fusion gene products, p77E2A-Pbx1 and p85E2A-Pbx1. E2A proteins of a predominant molecular mass of 72 kDa, which comigrated with in vitro-produced rat E12 and and rat E47, were detected in human pro-B, pre-B, mature B, and plasma cell lines. The Yae antibody detected an E2A-containing microE2 enhancer element-binding complex (BCF-1) in pre-B- and mature B-cell lines in electrophoretic mobility shift assays which displayed a migration rate similar to that of in vitro-produced rat E12 and rat E47. A new E2A-containing microE2-binding species (P-E2A) was identified in plasma cells by using electrophoretic mobility shift assays. E2A proteins were detected in pro-B cells but were unable to bind the microE2 site. These observations suggest that the microE2 site is the target of stage-specific E2A regulatory complexes during B-cell development. Immunostaining analyses demonstrated the predominant nuclear localization of E2A proteins. Finally, we have identified an E2A form, designated I-E2A, which is unable to bind DNA. Our observations demonstrate novel in vivo mechanisms for the regulation of transcription by E2A proteins during B-cell development.


1993 ◽  
Vol 13 (12) ◽  
pp. 7321-7333
Author(s):  
Y Jacobs ◽  
C Vierra ◽  
C Nelson

A monoclonal antibody (Yae) was characterized and shown to specifically recognize E2A proteins in vivo, including the E2A-Pbx1 fusion gene products, p77E2A-Pbx1 and p85E2A-Pbx1. E2A proteins of a predominant molecular mass of 72 kDa, which comigrated with in vitro-produced rat E12 and and rat E47, were detected in human pro-B, pre-B, mature B, and plasma cell lines. The Yae antibody detected an E2A-containing microE2 enhancer element-binding complex (BCF-1) in pre-B- and mature B-cell lines in electrophoretic mobility shift assays which displayed a migration rate similar to that of in vitro-produced rat E12 and rat E47. A new E2A-containing microE2-binding species (P-E2A) was identified in plasma cells by using electrophoretic mobility shift assays. E2A proteins were detected in pro-B cells but were unable to bind the microE2 site. These observations suggest that the microE2 site is the target of stage-specific E2A regulatory complexes during B-cell development. Immunostaining analyses demonstrated the predominant nuclear localization of E2A proteins. Finally, we have identified an E2A form, designated I-E2A, which is unable to bind DNA. Our observations demonstrate novel in vivo mechanisms for the regulation of transcription by E2A proteins during B-cell development.


Sign in / Sign up

Export Citation Format

Share Document