The human Pk histo-blood group antigen provides protection against HIV-1 infection

Blood ◽  
2009 ◽  
Vol 113 (20) ◽  
pp. 4980-4991 ◽  
Author(s):  
Nicole Lund ◽  
Martin L. Olsson ◽  
Stephanie Ramkumar ◽  
Darinka Sakac ◽  
Vered Yahalom ◽  
...  

Several human histo-blood groups are glycosphingolipids, including P/P1/Pk. Glycosphingolipids are implicated in HIV-host-cell-fusion and some bind to HIV-gp120 in vitro. Based on our previous studies on Fabry disease, where Pk accumulates and reduces infection, and a soluble Pk analog that inhibits infection, we investigated cell surface–expressed Pk in HIV infection. HIV-1 infection of peripheral blood–derived mononuclear cells (PBMCs) from otherwise healthy persons, with blood group P1k, where Pk is overexpressed, or blood group p, that completely lacks Pk, were compared with draw date–matched controls. Fluorescence-activated cell sorter analysis and/or thin layer chromatography were used to verify Pk levels. P1k PBMCs were highly resistant to R5 and X4 HIV-1 infection. In contrast, p PBMCs showed 10- to 1000-fold increased susceptibility to HIV-1 infection. Surface and total cell expression of Pk, but not CD4 or chemokine coreceptor expression, correlated with infection. Pk liposome–fused cells and CD4+ HeLa cells manipulated to express high or low Pk levels confirmed a protective effect of Pk. We conclude that Pk expression strongly influences susceptibility to HIV-1 infection, which implicates Pk as a new endogenous cell-surface factor that may provide protection against HIV-1 infection.

1999 ◽  
Vol 43 (10) ◽  
pp. 2376-2382 ◽  
Author(s):  
Zhengxian Gu ◽  
Mark A. Wainberg ◽  
Nghe Nguyen-Ba ◽  
Lucille L’Heureux ◽  
Jean-Marc de Muys ◽  
...  

ABSTRACT (−)-β-d-1′,3′-Dioxolane guanosine (DXG) and 2,6-diaminopurine (DAPD) dioxolanyl nucleoside analogues have been reported to be potent inhibitors of human immunodeficiency virus type 1 (HIV-1). We have recently conducted experiments to more fully characterize their in vitro anti-HIV-1 profiles. Antiviral assays performed in cell culture systems determined that DXG had 50% effective concentrations of 0.046 and 0.085 μM when evaluated against HIV-1IIIB in cord blood mononuclear cells and MT-2 cells, respectively. These values indicate that DXG is approximately equipotent to 2′,3′-dideoxy-3′-thiacytidine (3TC) but 5- to 10-fold less potent than 3′-azido-2′,3′-dideoxythymidine (AZT) in the two cell systems tested. At the same time, DAPD was approximately 5- to 20-fold less active than DXG in the anti-HIV-1 assays. When recombinant or clinical variants of HIV-1 were used to assess the efficacy of the purine nucleoside analogues against drug-resistant HIV-1, it was observed that AZT-resistant virus remained sensitive to DXG and DAPD. Virus harboring a mutation(s) which conferred decreased sensitivity to 3TC, 2′,3′-dideoxyinosine, and 2′,3′-dideoxycytidine, such as a 65R, 74V, or 184V mutation in the viral reverse transcriptase (RT), exhibited a two- to fivefold-decreased susceptibility to DXG or DAPD. When nonnucleoside RT inhibitor-resistant and protease inhibitor-resistant viruses were tested, no change in virus sensitivity to DXG or DAPD was observed. In vitro drug combination assays indicated that DXG had synergistic antiviral effects when used in combination with AZT, 3TC, or nevirapine. In cellular toxicity analyses, DXG and DAPD had 50% cytotoxic concentrations of greater than 500 μM when tested in peripheral blood mononuclear cells and a variety of human tumor and normal cell lines. The triphosphate form of DXG competed with the natural nucleotide substrates and acted as a chain terminator of the nascent DNA. These data suggest that DXG triphosphate may be the active intracellular metabolite, consistent with the mechanism by which other nucleoside analogues inhibit HIV-1 replication. Our results suggest that the use of DXG and DAPD as therapeutic agents for HIV-1 infection should be explored.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1175-1181 ◽  
Author(s):  
G Graziani ◽  
D Pasqualetti ◽  
M Lopez ◽  
C D'Onofrio ◽  
AM Testi ◽  
...  

Abstract Peripheral mononuclear cells (MNC) collected from 12 healthy donors and 44 leukemic patients at various stages of the disease were tested for natural killer (NK) activity and for their susceptibility to HTLV-I infection in vitro, measured in terms of percentage of p19 positive cells. MNC from leukemic donors at any stage of leukemia (ie, onset or relapse, ON/REL; complete remission or off-therapy, CR/OT donors) were highly susceptible to HTLV-I infection. This was true for acute leukemias of lymphoblastic (ALL) or nonlymphoblastic (ANLL) type. MNC of ON/REL patients were more susceptible to HTLV-I than those of CR/OT donors. In addition, leukemic blasts were more rapidly infected (ie, within five to seven days) than the HTLV-I-susceptible normal cord- blood lymphocytes. However, the presence of circulating blasts was not essential to virus susceptibility, since CR/OT MNC, presumably free of leukemic blasts, were still more susceptible to HTLV-I than normal cells. Basal NK function of MNC from leukemic patients was significantly lower than that detectable in healthy controls. However, no correlation was found between susceptibility to HTLV-I infection and NK activity.


AIDS ◽  
1993 ◽  
Vol 7 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Franco Pandolfi ◽  
Alessandra Oliva ◽  
Giovanna Sacco ◽  
Vittoria Polidori ◽  
Diana Liberatore ◽  
...  
Keyword(s):  

2016 ◽  
Vol 60 (7) ◽  
pp. 3956-3969 ◽  
Author(s):  
Beata Nowicka-Sans ◽  
Tricia Protack ◽  
Zeyu Lin ◽  
Zhufang Li ◽  
Sharon Zhang ◽  
...  

ABSTRACTBMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n= 87) ofgag/prrecombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to anin vitromeasurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally,in vitrocombination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potentin vitroanti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.


2007 ◽  
Vol 52 (2) ◽  
pp. 655-665 ◽  
Author(s):  
Tomas Cihlar ◽  
Adrian S. Ray ◽  
Constantine G. Boojamra ◽  
Lijun Zhang ◽  
Hon Hui ◽  
...  

ABSTRACT GS-9148 [(5-(6-amino-purin-9-yl)-4-fluoro-2,5-dihydro-furan-2-yloxymethyl)phosphonic acid] is a novel ribose-modified human immunodeficiency virus type 1 (HIV-1) nucleotide reverse transcriptase (RT) inhibitor (NRTI) selected from a series of nucleoside phosphonate analogs for its favorable in vitro biological properties including (i) a low potential for mitochondrial toxicity, (ii) a minimal cytotoxicity in renal proximal tubule cells and other cell types, (iii) synergy in combination with other antiretrovirals, and (iv) a unique resistance profile against multiple NRTI-resistant HIV-1 strains. Notably, antiviral resistance analysis indicated that neither the K65R, L74V, or M184V RT mutation nor their combinations had any effect on the antiretroviral activity of GS-9148. Viruses carrying four or more thymidine analog mutations showed a substantially smaller change in GS-9148 activity relative to that observed with most marketed NRTIs. GS-9131, an ethylalaninyl phosphonoamidate prodrug designed to maximize the intracellular delivery of GS-9148, is a potent inhibitor of multiple subtypes of HIV-1 clinical isolates, with a mean 50% effective concentration of 37 nM. Inside cells, GS-9131 is readily hydrolyzed to GS-9148, which is further phosphorylated to its active diphosphate metabolite (A. S. Ray, J. E. Vela, C. G. Boojamra, L. Zhang, H. Hui, C. Callebaut, K. Stray, K.-Y. Lin, Y. Gao, R. L. Mackman, and T. Cihlar, Antimicrob. Agents Chemother. 52:648-654, 2008). GS-9148 diphosphate acts as a competitive inhibitor of RT with respect to dATP (Ki = 0.8 μM) and exhibits low inhibitory potency against host polymerases including DNA polymerase γ. Oral administration of GS-9131 to beagle dogs at a dose of 3 mg/kg of body weight resulted in high and persistent levels of GS-9148 diphosphate in peripheral blood mononuclear cells (with a maximum intracellular concentration of >9 μM and a half-life of >24 h). This favorable preclinical profile makes GS-9131 an attractive clinical development candidate for the treatment of patients infected with NRTI-resistant HIV.


2011 ◽  
Vol 56 (1) ◽  
pp. 341-351 ◽  
Author(s):  
Xiaofan Lu ◽  
Li Liu ◽  
Xu Zhang ◽  
Terrence Chi Kong Lau ◽  
Stephen Kwok Wing Tsui ◽  
...  

ABSTRACTNonnucleoside reverse transcriptase inhibitors (NNRTIs) are one of the key components of antiretroviral therapy drug regimen against human immunodeficiency virus type 1 (HIV-1) replication. We previously described a newly synthesized small molecule, 10-chloromethyl-11-demethyl-12-oxo-calanolide A (F18), a (+)-calanolide A analog, as a novel anti-HIV-1 NNRTI (H. Xue et al., J. Med. Chem. 53:1397–1401, 2010). Here, we further investigated its antiviral range, drug resistance profile, and underlying mechanism of action. F18 consistently displayed potent activity against primary HIV-1 isolates, including various subtypes of group M, circulating recombinant form (CRF) 01_AE, and laboratory-adapted drug-resistant viruses. Moreover, F18 displayed distinct profiles against 17 NNRTI-resistant pseudoviruses, with an excellent potency especially against one of the most prevalent strains with the Y181C mutation (50% effective concentration, 1.0 nM), which was in stark contrast to the extensively used NNRTIs nevirapine and efavirenz. Moreover, we induced F18-resistant viruses byin vitroserial passages and found that the mutation L100I appeared to be the dominant contributor to F18 resistance, further suggesting a binding motif different from that of nevirapine and efavirenz. F18 was nonantagonistic when used in combination with other antiretrovirals against both wild-type and drug-resistant viruses in infected peripheral blood mononuclear cells. Interestingly, F18 displayed a highly synergistic antiviral effect with nevirapine against nevirapine-resistant virus (Y181C). Furthermore,in silicodocking analysis suggested that F18 may bind to the HIV-1 reverse transcriptase differently from other NNRTIs. This study presents F18 as a new potential drug for clinical use and also presents a new mechanism-based design for future NNRTI.


Sign in / Sign up

Export Citation Format

Share Document