An early decrease in Notch activation is required for human TCR-αβ lineage differentiation at the expense of TCR-γδ T cells

Blood ◽  
2009 ◽  
Vol 113 (13) ◽  
pp. 2988-2998 ◽  
Author(s):  
Inge Van de Walle ◽  
Greet De Smet ◽  
Magda De Smedt ◽  
Bart Vandekerckhove ◽  
Georges Leclercq ◽  
...  

Abstract Although well characterized in the mouse, the role of Notch signaling in the human T-cell receptor αβ (TCR-αβ) versus TCR-γδ lineage decision is still unclear. Although it is clear in the mouse that TCR-γδ development is less Notch dependent compared with TCR-αβ differentiation, retroviral overexpression studies in human have suggested an opposing role for Notch during human T-cell development. Using the OP9-coculture system, we demonstrate that changes in Notch activation are differentially required during human T-cell development. High Notch activation promotes the generation of T-lineage precursors and γδ T cells but inhibits differentiation toward the αβ lineage. Reducing the amount of Notch activation rescues αβ-lineage differentiation, also at the single-cell level. Gene expression analysis suggests that this is mediated by differential sensitivities of Notch target genes in response to changes in Notch activation. High Notch activity increases DTX1, NRARP, and RUNX3 expression, genes that are down-regulated during αβ-lineage differentiation. Furthermore, increased interleukin-7 levels cannot compensate for the Notch dependent TCR-γδ development. Our results reveal stage-dependent molecular changes in Notch signaling that are critical for normal human T-cell development and reveal fundamental molecular differences between mouse and human.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2174-2174
Author(s):  
James D. Phelan ◽  
Ingrid Saba ◽  
Chinavenmeni S. Velu ◽  
Tarik Moroy ◽  
H. Leighton Grimes

Abstract Abstract 2174 Growth factor independent-1 (Gfi1) is a zinc finger transcriptional repressor protein originally identified in a rodent model of T-cell leukemia. Gfi1 deficient mice have defects in T cell development and a moderate loss of thymic cellularity. In Drosophila, orthologs of Notch1 and Gfi1 cooperate to specify embryo sensory organ precursors. Given the established requirement for Notch1 in T cell specification and development as well as the functional relationship of Notch and Gfi1 orthologs in Drosophila genetics, we investigated the ability of Gfi1 and Notch to cooperate in T-cell development. Utilizing transgenic mice in which the expression of Cre recombinase is controlled by the proximal Lck promoter (LckCre) to both activate intracellular Notch1 (ICN) while simultaneously deleting Gfi1, we demonstrate that T cells overexpressing ICN require Gfi1 for their survival and proper integration of ICN signaling. First, we validated our approach by showing that Lck-Cre-mediated deletion of Gfi1 alleles (Gfi1flox/-) or activation of ICN expression (Rosa26lox-stop-loxICN ires eGFP, “RosaICN”) lead to expected phenotypes. We next examined the consequences of ICN activation with simultaneous deletion of Gfi1. Whereas inducible deletion of Gfi1 alone decreases thymic cellularity by ∼4-fold, Gfi1 deletion coupled with ICN activation leads to complete thymic involution with a 14-fold reduction in total T cell numbers (p<0.0001). To determine whether developmental context controlled this interaction, we used a series of temporally regulated T cell promoters to drive Cre expression. In addition to targeting thymocytes before TCRβ-selection with Lck-Cre, we also examined CD4-Cre (deleting after TCRβ-selection), as well as the distal Lck promoter-Cre (deleting after negative selection). Notably, CD4-Cre mediated activation of ICN and deletion of Gfi1 results in an ∼9-fold reduction in thymocyte numbers, similar to proximal Lck-Cre. However, the requirement for Gfi1 in ICN-expressing cells is not global, in that distal Lck-Cre mediated deletion in post-negative selection thymocytes revealed normal cell numbers. Variation in Notch signaling defects may explain the profound differences in cellularity observed between deleting Gfi1 early verses late in T cell development. We limited one allele of Gfi1 and examined the transcriptional effect upon ICN target genes. First, FACS sorted DN3 thymocytes (CD4−, CD8−, CD44−, CD25+) from proximal LckCre+RosaICNGfi1f/+ transgenic mice, showed that a full one-third of all ICN-activated genes are differentially regulated upon the loss of a single copy of Gfi1. In contrast, splenic T cells from distal Lck-iCre+RosaICNGfi1f/+, display an equivalent expression level of many Notch1 target genes as their Gfi1+/+ littermate controls (dLck-iCre+RosaICNGfi1+/+). Moreover, these Notch signaling defects do not appear to require supraphysiological levels of activated ICN as evidenced by dysregulated endogenous Notch1 target gene activation in Gfi1−/− mice, including FACS sorted DN1 thymocytes and early bone marrow progenitors. Finally, this defect is cell autonomous in that Gfi1−/− early thymic progenitors do not develop on OP9-DL1 stroma cells whereas their WT littermates develop into DN3 T cells within 6 days. Therefore, our data both confirms and extends a functional genetic relationship between Notch1 and Gfi1 from fruit fly to mammalian lymphocyte development. Furthermore, our data suggests that Gfi1−/− developing thymocytes are incapable of correctly interpreting Notch signals, which ultimately leads to their death. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 6 (31) ◽  
pp. eaaw7313 ◽  
Author(s):  
Laura Garcia-Perez ◽  
Farbod Famili ◽  
Martijn Cordes ◽  
Martijn Brugman ◽  
Marja van Eggermond ◽  
...  

T cell factor 1 (Tcf1) is the first T cell–specific protein induced by Notch signaling in the thymus, leading to the activation of two major target genes, Gata3 and Bcl11b. Tcf1 deficiency results in partial arrests in T cell development, high apoptosis, and increased development of B and myeloid cells. Phenotypically, seemingly fully T cell–committed thymocytes with Tcf1 deficiency have promiscuous gene expression and an altered epigenetic profile and can dedifferentiate into more immature thymocytes and non-T cells. Restoring Bcl11b expression in Tcf1-deficient cells rescues T cell development but does not strongly suppress the development of non-T cells; in contrast, expressing Gata3 suppresses their development but does not rescue T cell development. Thus, T cell development is controlled by a minimal transcription factor network involving Notch signaling, Tcf1, and the subsequent division of labor between Bcl11b and Gata3, thereby ensuring a properly regulated T cell gene expression program.


Blood ◽  
2009 ◽  
Vol 113 (14) ◽  
pp. 3254-3263 ◽  
Author(s):  
Tom Taghon ◽  
Inge Van de Walle ◽  
Greet De Smet ◽  
Magda De Smedt ◽  
Georges Leclercq ◽  
...  

Abstract Notch signaling is absolutely required for β-selection during mouse T-cell development, both for differentiation and proliferation. In this report, we investigated whether Notch has an equally important role during human T-cell development. We show that human CD34+ thymocytes can differentiate into CD4+CD8β+ double positive (DP) thymocytes in the absence of Notch signaling. While these DP cells phenotypically resemble human β-selected cells, they lack a T-cell receptor (TCR)–β chain. Therefore, we characterized the β-selection checkpoint in human T-cell development, using CD28 as a differential marker at the immature single positive CD4+CD3−CD8α− stage. Through intracellular TCR-β staining and gene expression analysis, we show that CD4+CD3−CD8α−CD28+ thymocytes have passed the β-selection checkpoint, in contrast to CD4+CD3−CD8α−CD28− cells. These CD4+CD3−CD8α−CD28+ thymocytes can efficiently differentiate into CD3+TCRαβ+ human T cells in the absence of Notch signaling. Importantly, preselection CD4+CD3−CD8α−CD28− thymocytes can also differentiate into CD3+TCRαβ+ human T cells without Notch activation when provided with a rearranged TCR-β chain. Proliferation of human thymocytes, however, is clearly Notch-dependent. Thus, we have characterized the β-selection checkpoint during human T-cell development and show that human thymocytes require Notch signaling for proliferation but not for differentiation at this stage of development.


2007 ◽  
Vol 3 (1) ◽  
pp. 57-75 ◽  
Author(s):  
Ross La Motte-Mohs ◽  
Geneve Awong ◽  
Juan Carlos Zuniga-Pflucker

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4239-4245 ◽  
Author(s):  
J Plum ◽  
M De Smedt ◽  
G Leclercq ◽  
B Verhasselt ◽  
B Vandekerckhove

Highly purified human CD34+ fetal liver stem cells differentiate to mature T cells when seeded in vitro into isolated fetal thymic lobes of severe combined immunodeficient (SCID) mice followed by fetal thymus organ culture (FTOC). Here, this chimeric human-mouse FTOC was used to address the role of interleukin-7 (IL-7) and of the alpha chain of the IL-7 receptor (IL-7R alpha) in early human T-cell development. We report that addition of either the monoclonal antibody (MoAb) M25, which neutralizes both human and mouse IL-7, or the MoAb M21, which recognizes and blocks exclusively the human high-affinity alpha-chain of the IL-7R, results in a profound reduction in human thymic cellularity. Analysis of lymphoid subpopulations indicates that a highly reduced number of cells undergo maturation from CD34+ precursor cells toward CD4+CD3-CD1+ progenitor cells and subsequently toward CD4+CD8+ thymocytes. Our results reveal a critical role for IL-7 during early human thymocyte development, and may explain the absence or highly reduced levels of T cells in patients with X-linked SCID. The molecular defect in these patients has been shown to be a mutation in the gamma chain of the IL-2R. Although this gamma chain is not only present in the IL-2R, but also forms an essential part of other cytokine receptors, including IL-4, IL-7, IL-9, IL-13, and IL-15, the T- cell defect in these patients can be explained by the fact that IL-7 is not able to transduce its signal by the molecular defect of the common gamma (gamma c) chain and that IL-7 is indispensable for T-cell development.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3151-3151
Author(s):  
Jalal Taneera ◽  
Emma Smith ◽  
Mikael Sigvardsson ◽  
Emil Hansson ◽  
Urban Lindahl ◽  
...  

Abstract Notch activation has been suggested to promote T cell development at the expense of B cell commitment at the level of a common lymphoid progenitor prior to B cell commitment. Here, we explored the possibility that Notch activation might be able to switch the fate of already committed B cell progenitors towards T cell development upon Notch activation. To address this we overexpressed constitutively activated Notch-3 (N3IC) in B cell progenitors purified from transgenic mice in which human CD25 is expressed under control of the λ5 promoter. Strikingly, whereas untransduced and control transduced B220+λ5+CD3− B cell progenitors gave rise exclusively to B cells, CD4+ and CD8+ T cells but no B cells were derived from N3IC-transduced cells when transplanted into sublethally irradiated NOD-SCID mice. Gene expression profiling demonstrated that untransduced B220+ λ5+CD3− B cell progenitors expressed λ5 and CD19 but not the T cell specific genes GATA-3, lck and pTα, whereas CD3+ T cells derived from N3IC-transduced B220+λ5+CD3−cells failed to express λ5 and CD19, but were positive for GATA-3, lck and pTα expression as well as a and b T cell rearrangement. Furthermore, DJ rearrangements were detected at very low levels in CD3+ cells isolated from normal non-transduced BM, but were more abundant in the N3IC-transduced CD3+ BM cells. Noteworthy, N3IC-transduced B220+λ5+CD3−CD19+ proB cell progenitors failed to generate B as well as T cells, whereas N3IC-transduced B220+λ5+CD3−CD19− pre-proB cells produced exclusively T cells, even when evaluated at low cell numbers. In conclusion Notch activation can switch committed B cell progenitors from a B cell to a T cell fate, but this plasticity is lost at the Pro-B cell stage, upon upregulation of CD19 expression.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2405-2405
Author(s):  
Bing Xu ◽  
Peng Li

Abstract The transcription factor Kruppel-like factor 4 (KLF4) may induce tumorigenesis or suppress tumor growth in a tissue-dependent manner. We found that overexpression of KLF4 induced not only human acute T-acute lymphoblastic leukemia (T-ALL) cell lines but also primary samples from T-ALL patients to undergo apoptosis through the BCL2/BCLXL pathway in vitro. T cell-associated genes including BCL11B, GATA3, and TCF7 were negatively regulated by KLF4 overexpression. Especially, KLF4 induced SUMOylation and degradation of BCL11B. However, the KLF4-induced apoptosis in T-ALL was rescued by the in vivo microenvironment. Furthermore, the invasion capacity of T-ALL to hosts was compromised when KLF4 was overexpressed. In normal human T cells, the overexpression of KLF4 severely impaired T cell development at early stages, but the blockage of T cell development was resumed by restoration of GATA3 or ICN1. In summary, our data demonstrate that KLF4 acts as a tumor suppressor in malignant T cells and that downregulation of KLF4 may be a prerequisite for early human T cell development and homeostasis. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
John M. Edgar ◽  
Peter W. Zandstra

ABSTRACTT-cell development from hematopoietic stem and progenitor cells (HSPCs) is tightly regulated through Notch pathway activation by the Notch ligands Delta-like (DL) 1 and 4 and Jagged-2. Other molecules, such as stem cell factor (SCF), FMS-like tyrosine kinase 3 ligand (Flt3L) and interleukin (IL)-7, play a supportive role in regulating the survival, differentiation, and proliferation of developing progenitor (pro)T-cells. Numerous other signaling molecules are known to instruct T-lineage development in vivo, but little work has been done to optimize their use for T-cell production in vitro. Using a defined T-lineage differentiation assay consisting of plates coated with the Notch ligand DL4 and adhesion molecule VCAM-1, we performed a cytokine screen that identified IL-3 and tumor necrosis factor α (TNFα) as enhancers of proT-cell differentiation and expansion. Mechanistically, we found that TNFα induced T-lineage differentiation through the positive regulation of T-lineage genes GATA3, TCF7, and BCL11b. TNFα also synergized with IL-3 to induce proliferation by upregulating the expression of the IL-3 receptor on CD34+ HSPCs, yielding 753.2 (532.4-1026.9; 5-95 percentile)-fold expansion of total cells after 14 days compared to 8.9 (4.3-21.5)-fold expansion in conditions without IL-3 and TNFα. We then optimized cytokine concentrations for T-cell maturation. Focusing on T-cell maturation, we used quantitative models to optimize dynamically changing cytokine requirements and used these to construct a three-stage assay for generating CD3+CD4+CD8+ and CD3+CD4−CD8+ T-cells. Our work provides new insight into T-cell development and a robust in vitro assay for generating T-cells to enable clinical therapies for treating cancer and immune disorders.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3156-3156
Author(s):  
Hongfang Wang ◽  
L. Jeanne Pierce ◽  
Gerald J. Spangrude

Abstract Notch signaling plays a critical role in T lineage commitment during lymphoid differentiation. However, Notch signaling alone is not sufficient to support T cell development through the CD4/CD8 double positive (DP) stage in vitro. We here report distinct effects of several cytokines on T cell differentiation in the OP9-DL1 cell culture model. Our studies show that Flt3 ligand enhances the proliferation of progenitors but has no obvious effect on differentiation. In contrast, stem cell factor (SCF) favors the proliferation of CD4/CD8 double negative (DN) lymphoid progenitors and inhibits differentiation to the DP stage in a dose-dependent manner. Differentiation of the NK lineage is promoted under these conditions. Conversely, blocking the function of SCF that is expressed endogenously by OP9-DL1 cells inhibits proliferation of lymphoid progenitors and accelerates T lineage differentiation. IL-7 is necessary for differentiation from the DP to the CD8 single positive (SP) stage, and is also required for γδ T lineage development. We also find a dosage effect of IL-7 during T cell development. OP9 and OP9-DL1 stromal cells produce endogenous levels of IL-7 that are sufficient to support B and DP T cell differentiation. However, the amount of endogenous IL-7 is not sufficient to support T cell differentiation from the DP to the SP stage. Addition of exogenous IL-7 (1–10 ng/ml) to the cultures promotes SP differentiation, while blocking endogenous IL-7 with anti-IL-7 antibody inhibits both B and T cell development. We conclude that activation through the Notch pathway is sufficient to suppress B lineage differentiation and thereby promote T lineage commitment, but is not sufficient to promote the subsequent stages of T cell development. SCF promotes expansion and directs NK lineage differentiation at the expense of T cell development, while IL-7 provides both proliferation as well as T lineage differentiation signals. T cell development from the DN to the DP stage requires a low amount of IL-7, while differentiation from the DP to the SP stage requires a higher level of IL-7. The balance between the effects mediated by these cytokines, along with Notch signaling, plays a critical role in regulating development of the T and NK lineages.


2013 ◽  
Vol 210 (4) ◽  
pp. 683-697 ◽  
Author(s):  
Inge Van de Walle ◽  
Els Waegemans ◽  
Jelle De Medts ◽  
Greet De Smet ◽  
Magda De Smedt ◽  
...  

In humans, high Notch activation promotes γδ T cell development, whereas lower levels promote αβ-lineage differentiation. How these different Notch signals are generated has remained unclear. We show that differential Notch receptor–ligand interactions mediate this process. Whereas Delta-like 4 supports both TCR-αβ and -γδ development, Jagged1 induces mainly αβ-lineage differentiation. In contrast, Jagged2-mediated Notch activation primarily results in γδ T cell development and represses αβ-lineage differentiation by inhibiting TCR-β formation. Consistently, TCR-αβ T cell development is rescued through transduction of a TCR-β transgene. Jagged2 induces the strongest Notch signal through interactions with both Notch1 and Notch3, whereas Delta-like 4 primarily binds Notch1. In agreement, Notch3 is a stronger Notch activator and only supports γδ T cell development, whereas Notch1 is a weaker activator supporting both TCR-αβ and -γδ development. Fetal thymus organ cultures in JAG2-deficient thymic lobes or with Notch3-blocking antibodies confirm the importance of Jagged2/Notch3 signaling in human TCR-γδ differentiation. Our findings reveal that differential Notch receptor–ligand interactions mediate human TCR-αβ and -γδ T cell differentiation and provide a mechanistic insight into the high Notch dependency of human γδ T cell development.


Sign in / Sign up

Export Citation Format

Share Document