The role of the human cytomegalovirus UL111A gene in down-regulating CD4+ T-cell recognition of latently infected cells: implications for virus elimination during latency

Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4128-4137 ◽  
Author(s):  
Allen K. L. Cheung ◽  
David J. Gottlieb ◽  
Bodo Plachter ◽  
Sandra Pepperl-Klindworth ◽  
Selmir Avdic ◽  
...  

AbstractThe capacity of human cytomegalovirus (HCMV) to establish and maintain a latent infection from which it can later reactivate ensures its widespread distribution in the population, but the mechanisms enabling maintenance of latency in the face of a robust immune system are poorly understood. We examined the role of the HCMV UL111A gene, which encodes homologs of the immunosuppressive cytokine interleukin-10 in the context of latent infection of myeloid progenitor cells. A UL111A deletion virus was able to establish, maintain, and reactivate from experimental latency in a manner comparable with parental virus, but major histocompatibility complex class II levels increased significantly on the surfaces of cells infected with the deletion virus. Importantly, there was an increase in both allogeneic and autologous peripheral blood mononuclear cells and CD4+ T-cell responses to UL111A deletion virus-infected myeloid progenitors, indicating that loss of the capacity to express viral interleukin-10 during latency results in latently infected cells becoming more readily recognizable by a critical arm of the immune response. The detection of a viral gene that suppresses CD4+ T-cell recognition of latently infected cells identifies an immune evasion strategy that probably enhances the capacity of HCMV to persist in a latent state within the human host.

2010 ◽  
Vol 91 (8) ◽  
pp. 2040-2048 ◽  
Author(s):  
Siok-Keen Tey ◽  
Felicia Goodrum ◽  
Rajiv Khanna

Recent studies have shown that long-term persistence of human cytomegalovirus (HCMV) in mononuclear cells of myeloid lineage is dependent on the UL138 open reading frame, which promotes latent infection. Although T-cell recognition of protein antigens from all stages of lytic HCMV infection is well established, it is not clear whether proteins expressed during latent HCMV infection can also be recognized. This study conducted an analysis of T-cell response towards proteins associated with HCMV latency. Ex vivo analysis of T cells from healthy virus carriers revealed a dominant CD8+ T-cell response to the latency-associated pUL138 protein, which recognized a non-canonical 13 aa epitope in association with HLA-B*3501. These pUL138-specific T cells displayed a range of memory phenotypes that were in general less differentiated than that previously described in T cells specific for HCMV lytic antigens. Antigen-presentation assays revealed that endogenous pUL138 could be presented efficiently by HCMV-infected cells. However, T-cell recognition of pUL138 was dependent on newly synthesized protein, with little presentation from stable, long-lived protein. These data demonstrate that T cells targeting latency-associated protein products exist, although HCMV may limit the presentation of latent proteins, thereby restricting T-cell recognition of latently infected cells.


2000 ◽  
Vol 74 (19) ◽  
pp. 9333-9337 ◽  
Author(s):  
Kirsten Lofgren White ◽  
Barry Slobedman ◽  
Edward S. Mocarski

ABSTRACT Human cytomegalovirus latency in bone marrow-derived myeloid progenitors is characterized by the presence of latency-associated transcripts encoded in the ie1/ie2 region of the viral genome. To assess the role of ORF94 (UL126a), a conserved open reading frame on these transcripts, a recombinant virus (RC2710) unable to express this gene was constructed. This virus replicated at wild-type levels and expressed productive as well as latency-associatedie1/ie2 region transcripts. During latency in granulocyte-macrophage progenitors, RC2710 DNA was detected at levels indistinguishable from wild-type virus, latent-phase transcription was present, and RC2710 reactivated when latently infected cells were cocultured with permissive fibroblasts. These data suggest pORF94 is not required for either productive or latent infection as assayed in cultured cells despite being the only known nuclear latency-associated protein.


1980 ◽  
Vol 3 (2) ◽  
pp. 213-245 ◽  
Author(s):  
J. Sprent ◽  
R. Korngold ◽  
K. Molnar-Kimber

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4084-4084
Author(s):  
Marieke Griffioen ◽  
M. Willy Honders ◽  
Anita N. Stumpf ◽  
Edith D. van der Meijden ◽  
Cornelis A.M. van Bergen ◽  
...  

Abstract Abstract 4084 Poster Board III-1019 Donor lymphocyte infusion (DLI) can be an effective cellular immunotherapy for patients with hematological malignancies after HLA-matched allogeneic stem cell transplantation (alloSCT). The effect of DLI is mediated by donor derived T-cells recognizing minor histocompatibility antigens (mHags) encoded by single nucleotide polymorphisms (SNPs) on malignant cells of the recipient. Donor T-cells may also induce Graft-versus-Host Disease (GvHD) when directed against mHags with broad expression on non-malignant tissues. The aim of this study was to investigate the specificity and diversity of mHags recognized by T-cells in Graft-versus-Leukemia (GvL) reactivity. Activated (HLA-DR+) CD8+ and CD4+ T-cell clones were isolated from a patient successfully treated with DLI for relapsed chronic myeloid leukemia (CML) more than one year after HLA-matched alloSCT. GvL reactivity in this patient was accompanied with mild GvHD of the skin. Isolated T-cell clones were shown to recognize 13 different mHags. CD8+ T-cell clones were specific for HA-1 and HA-2 in HLA-A*0201, one unknown mHag in B*0801 and 4 unknown mHags in B*4001. CD4+ T-cell clones were specific for one unknown mHag in HLA-DQ and 5 unknown mHags in DR. By screening plasmid (class I) and bacteria (class II) cDNA libraries, we identified a mHag in HLA-DQ encoded by the PI4K2B gene (Griffioen et al., PNAS 2008), 4 mHags in HLA-DR encoded by the PTK2B, MR-1, LY75 and MTHFD1 genes (Stumpf et al., Blood 2009) and a mHag in B*4001 encoded by the TRIP10 gene. For the 3 T cell clones recognizing unknown mHags in B*4001, we performed Whole Genome Assocation scanning (WGAs). A panel of 60 EBV-LCL was retrovirally-transduced with B*4001 and tested for T-cell recognition. In parallel, genomic DNA was isolated and more than one million single nucleotide polymorphisms (SNPs) were determined by the Illumina beadchip array. Statistical analysis revealed significant association between T-cell recognition of EBV-LCL and the presence of coding SNPs in the SON DNA-binding protein and SWAP-70 genes. To get more insight into the role and potential use of the mHags in GvL reactivity and GvHD, all T-cell clones were analyzed in detail for reactivity against hematopoietic and non-hematopoietic cells. Hematopoietic cells included peripheral blood cells (monocytes, B-cells and T-cells), professional antigen presenting cells (APC) and leukemic cells (CML, ALL and AML). All CD8+ T-cell clones recognized (subsets of) peripheral blood cells as well as CML cells, except for the T-cell clone for TRIP10. Recognition of (subsets of) peripheral blood cells was also observed for all CD4+ T-cell clones, but CML cells were differentially recognized. CML cells were strongly recognized by the T-cell clones for MTHFD1 and the unknown mHag in HLA-DR, whereas no or low reactivity was observed for all other CD4+ T-cell clones. All CD8+ and CD4+ T-cell clones strongly recognized professional APC, including monocyte-derived dendritic cells and in vitro differentiated CML cells with APC phenotype. All T-cell clones were also capable of recognizing AML and ALL, except for the T-cell clone for TRIP10, which showed restricted recognition of AML-M4 and -M5 of monocytic origin. As non-hematopoietic cells, patient-derived fibroblasts were cultured with and without IFN-γ and tested for T-cell recognition. In the absence of IFN-γ, all T-cell clones failed to recognize fibroblasts, except for the T-cell clone for the unknown mHag in B*0801. After treatment with IFN-γ, additional reactivity was observed for the T-cell clones for SON DNA-binding protein and the unknown mHag in B*4001. Our data showed the specificity and diversity of mHags recognized by T-cells induced in a patient successfully treated with DLI for relapsed CML. The T-cell response was directed against 13 different mHags, of which 10 mHags in HLA class I and class II have now been identified by different techniques. Detailed analysis of T-cell recognition of hematopoietic and non-hematopoietic cells provides evidence that the mHags played different roles in the onset and execution of GvL and GvHD. Moreover, only one of the 10 identified mHags was expressed on fibroblasts after treatment with IFN-γ, indicating the characterization of mHags with potential relevance for T-cell based immunotherapy. Disclosures: No relevant conflicts of interest to declare.


AIDS ◽  
1997 ◽  
Vol 11 (3) ◽  
pp. 281-288 ◽  
Author(s):  
Maria H. Fernandez ◽  
Sarah J. Fidler ◽  
Richard J. Pitman ◽  
Jonathan N. Weber ◽  
Ann D.M. Rees

2007 ◽  
Vol 57 (6) ◽  
pp. 833-847 ◽  
Author(s):  
Eyad Elkord ◽  
Deborah J. Burt ◽  
Jan W. Drijfhout ◽  
Robert E. Hawkins ◽  
Peter L. Stern

Sign in / Sign up

Export Citation Format

Share Document