scholarly journals The derivation of diagnostic markers of chronic myeloid leukemia progression from microarray data

Blood ◽  
2009 ◽  
Vol 114 (15) ◽  
pp. 3292-3298 ◽  
Author(s):  
Vivian G. Oehler ◽  
Ka Yee Yeung ◽  
Yongjae E. Choi ◽  
Roger E. Bumgarner ◽  
Adrian E. Raftery ◽  
...  

Abstract Currently, limited molecular markers exist that can determine where in the spectrum of chronic myeloid leukemia (CML) progression an individual patient falls at diagnosis. Gene expression profiles can predict disease and prognosis, but most widely used microarray analytical methods yield lengthy gene candidate lists that are difficult to apply clinically. Consequently, we applied a probabilistic method called Bayesian model averaging (BMA) to a large CML microarray dataset. BMA, a supervised method, considers multiple genes simultaneously and identifies small gene sets. BMA identified 6 genes (NOB1, DDX47, IGSF2, LTB4R, SCARB1, and SLC25A3) that discriminated chronic phase (CP) from blast crisis (BC) CML. In CML, phase labels divide disease progression into discrete states. BMA, however, produces posterior probabilities between 0 and 1 and predicts patients in “intermediate” stages. In validation studies of 88 patients, the 6-gene signature discriminated early CP from late CP, accelerated phase, and BC. This distinction between early and late CP is not possible with current classifications, which are based on known duration of disease. BMA is a powerful tool for developing diagnostic tests from microarray data. Because therapeutic outcomes are so closely tied to disease phase, these probabilities can be used to determine a risk-based treatment strategy at diagnosis.


Author(s):  
Michael W. Deininger

Clinical staging of chronic myeloid leukemia (CML) distinguishes between chronic phase (CP-CML), accelerated phase (AP-CML), and blastic phase (BP-CML), reflecting its natural history in the absence of effective therapy. Morphologically, transformation from CP-CML to AP/BP-CML is characterized by a progressive or sudden loss of differentiation. Multiple different somatic mutations have been implicated in transformation from CP-CML to AP/BC-CML, but no characteristic mutation or combination of mutations have emerged. Gene expression profiles of AP-CML and BP-CML are similar, consistent with biphasic evolution at the molecular level. Gene expression of tyrosine kinase inhibitor (TKI)–resistant CP-CML and second CP-CML resemble AP/BP-CML, suggesting that morphology alone is a poor predictor of biologic behavior. At the clinical level, progression to AP/BP-CML or resistance to first-line TKI therapy distinguishes a good risk condition with survival close to the general population from a disease likely to reduce survival. Progression while receiving TKI therapy is frequently caused by mutations in the target kinase BCR-ABL1, but progression may occur in the absence of explanatory BCR-ABL1 mutations, suggesting involvement of alternative pathways. Identifying patients in whom milestones of TKI response fail to occur or whose disease progress while receiving therapy requires appropriate molecular monitoring. Selection of salvage TKI depends on prior TKI history, comorbidities, and BCR-ABL1 mutation status. Despite the introduction of novel TKIs, therapy of AP/BP-CML remains challenging and requires accepting modalities with substantial toxicity, such as hematopoietic stem cell transplantation (HSCT).



2013 ◽  
Vol 3 (11) ◽  
pp. e157-e157 ◽  
Author(s):  
J Menezes ◽  
R N Salgado ◽  
F Acquadro ◽  
G Gómez-López ◽  
M C Carralero ◽  
...  


Blood ◽  
2020 ◽  
Vol 135 (26) ◽  
pp. 2337-2353 ◽  
Author(s):  
Tun Kiat Ko ◽  
Asif Javed ◽  
Kian Leong Lee ◽  
Thushangi N. Pathiraja ◽  
Xingliang Liu ◽  
...  

Abstract Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC) CML remains challenging because BC cells acquire complex molecular alterations that confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine kinase inhibitors. Comprehensive models of BC transformation have proved elusive because of the rarity and genetic heterogeneity of BC, but are important for developing biomarkers predicting BC progression and effective therapies. To better understand BC, we performed an integrated multiomics analysis of 74 CP and BC samples using whole-genome and exome sequencing, transcriptome and methylome profiling, and chromatin immunoprecipitation followed by high-throughput sequencing. Employing pathway-based analysis, we found the BC genome was significantly enriched for mutations affecting components of the polycomb repressive complex (PRC) pathway. While transcriptomically, BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets respectively. By integrating our data sets, we determined that BC progenitors undergo PRC-driven epigenetic reprogramming toward a convergent transcriptomic state. Specifically, PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing BC reprogramming (decitabine+PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene expression signatures predictive of disease progression and drug resistance in CP.



Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2013-2016 ◽  
Author(s):  
H Sill ◽  
JM Goldman ◽  
NC Cross

The p16 gene, also referred to as MTS1, INK4, CDK4I, or CDKN2, at chromosome 9p21 has recently been described as a tumor suppressor that may be involved in a wide range of tumors. We have used a semiquantitative multiplex polymerase chain reaction assay to search for deletions of the p16 gene in 34 patients with chronic myeloid leukemia in blast crisis (CML BC), 19 patients with acute lymphoblastic leukemia (ALL), and 25 patients with acute myeloid leukemia (AML). Homozygous deletions of p16 exons were found in 5 of 10 (50%) patients with CML in lymphoid BC and in 5 (26%) ALL patients, but in only 1 (2%) case with AML. No deletions were found in CML BC of nonlymphoid phenotype. Comparison of chronic phase DNA or remission DNA with acute leukemia DNA in 5 individuals showed that the p16 deletions were acquired and not inherited, directly implicating these lesions in the pathogenesis of the disease. We conclude that functional elimination of the p16 gene, or a closely mapping gene, is involved in a significant number of patients with CML in lymphoid transformation.



Blood ◽  
1981 ◽  
Vol 58 (6) ◽  
pp. 1107-1111 ◽  
Author(s):  
M Koya ◽  
T Kanoh ◽  
H Sawada ◽  
H Uchino ◽  
K Ueda

Abstract Adenosine deaminase (ADA) and ecto-5′-nucleotidase (5′-N) activities were examined in peripheral leukocytes from patients with leukemias, including nine patients with chronic myeloid leukemia (CML) in blast crisis. Four of none cases of CML in blast crisis were myeloid and the remaining lymphoid morphologically. The diagnosis of CML in lymphoid blast crisis was further contributed by the measurement of terminal deoxynucleotidyl transferase (TdT) activity. In all four cases of lymphoid blast crisis and one of myeloid blast crisis, leukemia cells had high 5′-N activity, while there was a little or no detectable activity in those from four cases of myeloid blast crisis and all of CML in chronic phase. ADA activity was high in seven of nine patients with blast crisis. Taken together, leukemia cells from two cases of lymphoid blast crisis had high ADA and 5′-N activities comparable to those in acute lymphocytic leukemia (ALL) cells. In contrast, the enzyme activities of leukemia cells from all but one patient in myeloid blast crisis were in a range similar to acute myeloid leukemia cells. The implications of these findings are as follows: (1) 5′-N may be used as a new biochemical marker of CML in lymphoid blast crisis. (2) Some lymphoid cells of CML in blast crisis have high ADA, 5′-N, and TdT activities and thus are very similar to ALL cells.



Blood ◽  
2009 ◽  
Vol 113 (8) ◽  
pp. 1619-1630 ◽  
Author(s):  
Alfonso Quintás-Cardama ◽  
Jorge Cortes

Abstract Chronic myeloid leukemia (CML) has been regarded as the paradigmatic example of a malignancy defined by a unique molecular event, the BCR-ABL1 oncogene. Decades of research zeroing in on the role of BCR-ABL1 kinase in the pathogenesis of CML have culminated in the development of highly efficacious therapeutics that, like imatinib mesylate, target the oncogenic kinase activity of BCR-ABL1. In recent years, most research efforts in CML have been devoted to developing novel tyrosine kinase inhibitors (TKIs) as well as to elucidating the mechanisms of resistance to imatinib and other TKIs. Nonetheless, primordial aspects of the pathogenesis of CML, such as the mechanisms responsible for the transition from chronic phase to blast crisis, the causes of genomic instability and faulty DNA repair, the phenomenon of stem cell quiescence, the role of tumor suppressors in TKI resistance and CML progression, or the cross-talk between BCR-ABL1 and other oncogenic signaling pathways, still remain poorly understood. Herein, we synthesize the most relevant and current knowledge on such areas of the pathogenesis of CML.



Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2949-2949
Author(s):  
Michelle Giehl ◽  
Alice Fabarius ◽  
Chun Zheng ◽  
Oliver Frank ◽  
Andreas Hochhaus ◽  
...  

Abstract Purpose: Numerical and structural centrosome abnormalities are hallmarks of a variety of cancers and have been implicated in chromosome missegregation, chromosomal instability, and aneuploidy. These phenomena already occur in preneoplastic lesions like oral leukoplakia, early cervical neoplasias, and small benign tumors of colon and breast. Moreover, deviations from normal karyotype seem to increase as tumors enlarge and become malignant. Genetic instability is a common feature in chronic myeloid leukemia (CML). We sought to establish a relationship between centrosome abnormalities and cytogenetic aberrations in CD34+ cells from CML patients at diagnosis (chronic phase - CP) and in blast crisis (BC). Methods: Diagnosis of CML was established by hematologic, cytogenetic and molecular parameters. Treatment was performed according to the protocols of the German CML study group (www.kompetenznetz-leukaemie.de). CD34+ cells from ten umbilical cord blood specimens served as negative controls. Centrosome number and morphology were analyzed by immunofluorescence microscopy. In brief, CD34+ cells from ficollized peripheral blood samples were concentrated by magnetic cell sorting (MACS) and cytospun onto coated slides. After methanol fixation cells were incubated with antibodies directed to centrosomal proteins Pericentrin and gamma-Tubulin. Antibody-antigen complexes were stained by incubation with FITC- and Cy3-conjugated secondary antibodies. Results: CML CP samples tested at initial diagnosis (n=20) already displayed numerical and structural centrosome aberrations (30.0% +/−2.3) as compared with corresponding normal control cells (n=10) (2.3% +/−1.1). In BC samples (n=10) an increase of centrosome aberrations was observed (58.0% +/−2.0). Conclusion: The findings suggest that centrosome defects in CML occur early and are already present at primary diagnosis. Centrosome defects may contribute to disease progression by generation of further chromosome instability leading to accumulation of alleles carrying pro-oncogenic mutations and loss of alleles containing normal tumor suppressor genes and thus accelerating complex genomic changes associated with CML BC.



Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4888-4888
Author(s):  
Qitian Mu ◽  
Qiuling Ma ◽  
Yungui Wang ◽  
Xiangmin Tong ◽  
Zhimei Chen ◽  
...  

Abstract Abstract 4888 Background: Cytogenetic analyses of chronic myeloid leukemia (CML) have been performed previously in a large number of reports, but systematical research based on large sample sizes is seldom available. In order to further elucidate the cytogenetic nature of CML, we analyzed retrospectively the cytogenetic profiles of 1863 Ph/BCR-ABL-positive CML patients from a research center in China. Results: Of 1266 newly diagnosed CML patients, the median age was 41 years, which is younger than the median age of diagnosis in western populations. The incidence of additional chromosome abnormalities(ACAs) was 3.1% in newly-diagnosed chronic phase(CP), 9.1% in CP after therapy, 35.4% in accelerated phase(AP) and 52.9% in blast phase(BP), reflecting cytogenetic evolution with CML progression. 5.3% patients harbored a variant Ph translocation. A higher prevalence of ACAs was observed in variant Ph translocations than in classical t(9;22) in the disease progression, especially in BP(88.2% vs. 50%, p=0.002). Moreover, a hyperdiploid karyotype and trisomy 8 were closely correlated with myeloid blast crisis(BC) while a hypodiploid karyotype and monosomy 7 were associated with lymphoid-BC. Among subsets of myeloid-BC, compared with myeloid-BC with granulocytic differentiation or monocytic differentiation, myeloid-BC with minimal differentiation had higher ACAs rate (80% vs.46.8%, p=0.009 and 80% vs. 42.9%, p=0.006). Conclusion: CML tends to afflict younger population in China. In the disease progression, the incident of ACAs was higher in variant Ph translocations than in classical t(9;22). Among subsets of myeloid-BC, myeloid with minimal differentiation had distinct cytogenetic features. Disclosures: No relevant conflicts of interest to declare.



Sign in / Sign up

Export Citation Format

Share Document