Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells

Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1422-1432 ◽  
Author(s):  
Yuka Nakamura ◽  
Fumio Arai ◽  
Hiroko Iwasaki ◽  
Kentaro Hosokawa ◽  
Isao Kobayashi ◽  
...  

Abstract The endosteal niche is critical for the maintenance of hematopoietic stem cells (HSCs). However, it consists of a heterogeneous population in terms of differentiation stage and function. In this study, we characterized endosteal cell populations and examined their ability to maintain HSCs. Bone marrow endosteal cells were subdivided into immature mesenchymal cell-enriched ALCAM−Sca-1+ cells, osteoblast-enriched ALCAM+Sca-1−, and ALCAM–Sca-1− cells. We found that all 3 fractions maintained long-term reconstitution (LTR) activity of HSCs in an in vitro culture. In particular, ALCAM+Sca-1− cells significantly enhanced the LTR activity of HSCs by the up-regulation of homing- and cell adhesion–related genes in HSCs. Microarray analysis showed that ALCAM−Sca-1+ fraction highly expressed cytokine-related genes, whereas the ALCAM+Sca-1− fraction expressed multiple cell adhesion molecules, such as cadherins, at a greater level than the other fractions, indicating that the interaction between HSCs and osteoblasts via cell adhesion molecules enhanced the LTR activity of HSCs. Furthermore, we found an osteoblastic markerlow/− subpopulation in ALCAM+Sca-1− fraction that expressed cytokines, such as Angpt1 and Thpo, and stem cell marker genes. Altogether, these data suggest that multiple subsets of osteoblasts and mesenchymal progenitor cells constitute the endosteal niche and regulate HSCs in adult bone marrow.

2021 ◽  
Vol 5 (2) ◽  
pp. 01-04
Author(s):  
Ahmad Reza Rahnemoon

Hematopoietic microenvironment or niche keeps stem cells in multi-potent/ uni-potent state which prevents precocious differentiation. The niche employs a variety of factors includes growth factors, cytokines and cell adhesion molecules too. In this section, we try to have a better understanding about the role of hematopoietic stem cells, niche and hematopoiesis as well as we demonstrate that leukemia induced reprogramming initially and then remodeling of the bone marrow (BM) microenvironment which can be a major part of leukemogenesis and is a potential prognostic parameter in malignant hematopoietic disease as well.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1677-1677
Author(s):  
Toska J. Zomorodian ◽  
Debbie Greer ◽  
Kyle Wood ◽  
Bethany Foster ◽  
Delia Demers ◽  
...  

Abstract Transplanted bone marrow donor cells with tissue specific phenotypes have been found in the brain, liver, heart, skin, lung, kidney, and gut of transplanted humans and mice. Such observations have led to the controversial hypothesis that hematopoietic stem cells (HSC) might be intrinsically plastic, and through transdifferentiation or fusion lead to the repair of damaged tissues throughout the body. Alternately, it is suggested that fusion of macrophages to the recipient cells may explain this phenomenon. We have shown recently that purified HSC are the cells responsible for GFP positive donor-derived muscle fibers in the recipient mice post bone marrow transplantation. However, further studies sorting for macrophage markers Mac-1 and F4/80 also resulted in donor-derived muscle fibers in the host. To address this discrepancy, we investigated subpopulations of Mac-1 and F4/80 positive cells, in the presence or absence of stem cell markers (Sca-1 and C-kit). We demonstrate that only the subpopulations of Mac-1 and F4/80 positive cells harboring stem cell markers, Sca-1 or c-kit, were capable of contributing to the regenerating muscle post transplantation. Furthermore, these same subpopulations demonstrated single cell High Proliferative Potential (HPP) (6–26%) in a 7 factor cytokine cocktail, compared to the Mac-1 or F4/80 cells with no stem cell markers (0%). Additionally, they demonstrated long-term engraftment in all three lineages at 1-year (average chimerism of 55% versus 0% in stem cell marker negative groups). These subpopulations were also evaluated for morphology using Hematoxylin/Eosin (H/E), Wright-Giemsa, and Nonspecific Esterase staining. In the Mac-1 and F4/80 positive groups, those negative for stem cell markers resembled differentiated cells of the myeloid origin (macrophages, granulocytes), while those with positive stem cell markers demonstrated stem cell characteristics. We did not observe any engraftability, donor-derived muscle fibers, or HPP potential for CD14 or cfms positive cells coexpressing stem cell markers, indicating that these markers are more appropriate for identifying macrophages. In conclusion, our studies demonstrate that both Mac-1 and F4/80 surface markers are present on HSC and therefore caution must be taken in the interpretation of data using these macrophage markers. It is reasonable to believe that the use of Mac-1 and/or F4/80 surface markers in a lineage depletion process may result in the loss of a subpopulation of stem cells, and other markers such as CD14 or c-fms may be more appropriate for eliminating differentiated macrophages.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2417-2417
Author(s):  
Peiman Shooshtarizadeh ◽  
Ryan Chen ◽  
Tarik Moroy

Abstract Hematopoietic stem cells (HSCs) reside in the bone marrow in specific niches at the border between bone cells and the bone marrow (endosteal niche) or around blood vessels (perivascular niche). In the endosteal niche, HSCs are maintained at low oxygen levels in a quiescent (dormant) state by adhesion to niche cells. We have previously shown that Gfi1b restricts the expansion and proliferation of HSCs as well as their mobilization or re-localization into peripheral blood. We have proposed that Gfi1b exerts this function by regulating the expression of surface molecules such as integrins on HSCs that are required to maintain them in their bone marrow niche at a quiescent state. The objective of this study was to gain more insight into the precise molecular mechanisms by which Gfi1b regulates HSCs dormancy and mobilization and to obtain insights that may be exploited in the future to improve stem cell therapies or the expansion of human hematopoietic stem cells for clinical use. Immune precipitation and mass spectrometry identified a series of Gfi1b interacting proteins, most notably a group of regulators of the canonical Wnt/beta-catenin pathway. Independent protein IP validation of these findings suggested that Gfi1b can interact with several inhibitors of the canonical Wnt/beta catenin pathway namely with APC (Adenomatous polyposis coli) a tumor suppressor protein and important factor in the beta-catenin destruction complex, with the DNA helicase and chromatin remodeling factor CHD8, which silences beta catenin mediated transcription, with CtBP which antagonizes beta-catenin activity and is part of the LSD1/CoRest histone demethylase complex and with the direct beta-catenin inhibitors TLE1 and TLE3 (also called Groucho). Of particular interest was that the interactions between the Groucho proteins and Gfi1b were dependent on a previously unidentified Groucho binding domain (GBD) in Gfi1b. This is a well-conserved six-amino acid stretch that is found in the middle part of the Gfi1b protein. In addition, the binding of CtBP was dependent on the presence of the 20 amino acid N-terminal SNAG domain in Gfi1b that also mediates LSD1 binding. Using luciferase reporter gene assays (TOP/FOP reporter assay), we found that Gfi1b was able to significantly up-regulates TCF/beta-catenin-dependent transcription upon activation by LiCl or Wnt3A in HEK293 cells. This activity of Gfi1b was dependent on both the presence of the SNAG domain and the newly identified Groucho binding domain. Also, Gfi1b was able to reverse partially the inhibitory effect of CtBP and TLE3 on beta-catenin activity in the TOP/FOP reporter assays. To obtain further evidence that Gfi1b is indeed implicated in regulating the Wnt/beta catenin signaling pathway in hematopoietic stem cells, we FACS sorted Lin-Kit1+Sca+ hematopoietic progenitors (LSK cells) from wt and Gfi1b deficient mice and tested them for expression of Wnt effector genes using a Wnt signaling specific PCR array. We observed that the majority of Wnt target genes were significantly down regulated in Gfi1 deficient LSKs compared to wt LSKs. Among the genes affected the most were typical Wnt targets such as Axin2, Frz7, Tcf4, Klf5, Vegfa and Ccnd1. To show that Gfi1b is able to regulate Wnt pathway effectors in vivo in HSCs, we crossed Gfi1b flox/flox, Mx-Cre mice with animals that carry a NLS-lacZ reporter gene under the control of the endogenous Axin2 promoter/enhancer region. Treatment with pIpC, which deletes Gfi1b correlated with a significant decrease of Axin2 expression in HSCs and MPP1, which are high Gfi1b expressing cells. The Axin2 reporter was not affected by Gfi1b deletion in MPP2 or GMPs, which express low levels or no Gfi1b. The canonical Wnt/b-catenin signaling pathway is recognized as one of the elements that are critically important in the regulation of HSC function. Here we have identified Gfi1b as a potential new player in the Wnt-beta catenin signaling pathway. Our data suggest that Gfi1b acts on at least two inhibitory complexes of this pathway, on the TLE family of Groucho proteins and the CtBP/LSD1 complex and regulates effectors of the Wnt/beta-catenin signaling cascade. We propose therefore that Gfi1b may titer the level of activation of the Wnt/beta-catenin signaling pathway in HSCs, which offers an explanation of the hematopoietic stem cell phenotype seen in mice lacking Gfi1b. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Roland Windisch ◽  
Nina Pirschtat ◽  
Christian Kellner ◽  
Linping Chen-Wichmann ◽  
Jörn Lausen ◽  
...  

Numerous cell–cell and cell–matrix interactions within the bone marrow microenvironment enable the controlled lifelong self-renewal and progeny of hematopoietic stem and progenitor cells (HSPCs). On the cellular level, this highly mutual interaction is granted by cell adhesion molecules (CAMs) integrating differentiation, proliferation, and pro-survival signals from the surrounding microenvironment to the inner cell. However, cell–cell and cell–matrix interactions are also critically involved during malignant transformation of hematopoietic stem/progenitor cells. It has become increasingly apparent that leukemia-associated gene products, such as activated tyrosine kinases and fusion proteins resulting from chromosomal translocations, directly regulate the activation status of adhesion molecules, thereby directing the leukemic phenotype. These observations imply that interference with adhesion molecule function represents a promising treatment strategy to target pre-leukemic and leukemic lesions within the bone marrow niche. Focusing on myeloid leukemia, we provide a current overview of the mechanisms by which leukemogenic gene products hijack control of cellular adhesion to subsequently disturb normal hematopoiesis and promote leukemia development.


2013 ◽  
Vol 305 (7) ◽  
pp. C693-C703 ◽  
Author(s):  
Hironori Chiba ◽  
Koji Ataka ◽  
Kousuke Iba ◽  
Kanna Nagaishi ◽  
Toshihiko Yamashita ◽  
...  

Hematopoietic stem cells (HSCs) are maintained, and their division/proliferation and quiescence are regulated in the microenvironments, niches, in the bone marrow. Although diabetes is known to induce abnormalities in HSC mobilization and proliferation through chemokine and chemokine receptors, little is known about the interaction between long-term HSCs (LT-HSCs) and osteopontin-positive (OPN) cells in endosteal niche. To examine this interaction, LT-HSCs and OPN cells were isolated from streptozotocin-induced diabetic and nondiabetic mice. In diabetic mice, we observed a reduction in the number of LT-HSCs and OPN cells and impaired expression of Tie2, β-catenin, and N-cadherin on LT-HSCs and β1-integrin, β-catenin, angiopoietin-1, and CXCL12 on OPN cells. In an in vitro coculture system, LT-HSCs isolated from nondiabetic mice exposed to diabetic OPN cells showed abnormal mRNA expression levels of Tie2 and N-cadherin. Conversely, in LT-HSCs derived from diabetic mice exposed to nondiabetic OPN cells, the decreased mRNA expressions of Tie2, β-catenin, and N-cadherin were restored to normal levels. The effects of diabetic or nondiabetic OPN cells on LT-HSCs shown in this coculture system were confirmed by the coinjection of LT-HSCs and OPN cells into bone marrow of irradiated nondiabetic mice. Our results provide new insight into the treatment of diabetes-induced LT-HSC abnormalities and suggest that the replacement of OPN cells may represent a novel treatment strategy.


Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 4201-4208 ◽  
Author(s):  
Xiuli Wang ◽  
Shundi Ge ◽  
George McNamara ◽  
Qian-Lin Hao ◽  
Gay M. Crooks ◽  
...  

AbstractRodent bone marrow cells can contribute to liver. If these findings are applicable to humans, marrow stem cells could theoretically be harvested from a patient and used to repair his/her damaged liver. To explore this potential, CD34+ or highly purified CD34+CD38−CD7− human hematopoietic stem cells from umbilical cord blood and bone marrow were transplanted into immunodeficient mice. One month after transplantation, carbon tetrachloride (CCl4) was administered into the mice to induce liver damage and hepatocyte proliferation. Mice were analyzed in comparison with CCl4-injured mice that did not receive transplants and noninjured controls that received transplants with the same stem cell populations, one month after liver damage. Human-specific albumin mRNA and protein were expressed in the mouse liver and human albumin was detected in the serum of mice that had received CCl4 injury. Human alpha-fetoprotein was never expressed, but in some mice, human cytokeratin 19 was expressed, which may indicate bile duct development in addition to the albumin-secreting hepatocyte-like cells. Human albumin was not expressed in the starting stem cell populations in injured mice that did not receive transplants nor in noninjured mice that had received transplants of human stem cells. Human albumin expression was detected only in CCl4-treated mice that received transplants of human stem cells, and recovery was increased by administration of human hepatocyte growth factor 48 hours after the CCl4-mediated liver injury. Our studies provide evidence that human “hematopoietic” stem/progenitor cell populations have the capacity to respond to the injured liver microenvironment by inducing albumin expression.


Sign in / Sign up

Export Citation Format

Share Document