scholarly journals Loss of p19Arf in a Rag1−/− B-cell precursor population initiates acute B-lymphoblastic leukemia

Blood ◽  
2011 ◽  
Vol 118 (3) ◽  
pp. 544-553 ◽  
Author(s):  
Julia Hauer ◽  
Charles Mullighan ◽  
Estelle Morillon ◽  
Gary Wang ◽  
Julie Bruneau ◽  
...  

Abstract In human B-acute lymphoblastic leukemia (B-ALL), RAG1-induced genomic alterations are important for disease progression. However, given that biallelic loss of the RAG1 locus is observed in a subset of cases, RAG1's role in the development of B-ALL remains unclear. We chose a p19Arf−/−Rag1−/− mouse model to confirm the previously published results concerning the contribution of CDKN2A (p19ARF /INK4a) and RAG1 copy number alterations in precursor B cells to the initiation and/or progression to B-acute lymphoblastic leukemia (B-ALL). In this murine model, we identified a new, Rag1-independent leukemia-initiating mechanism originating from a Sca1+CD19+ precursor cell population and showed that Notch1 expression accelerates the cells' self-renewal capacity in vitro. In human RAG1-deficient BM, a similar CD34+CD19+ population expressed p19ARF. These findings suggest that combined loss of p19Arf and Rag1 results in B-cell precursor leukemia in mice and may contribute to the progression of precursor B-ALL in humans.

Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.


2016 ◽  
Vol 104 (3) ◽  
pp. 368-377 ◽  
Author(s):  
Nuket Yurur Kutlay ◽  
Esra Pekpak ◽  
Sule Altıner ◽  
Talia Ileri ◽  
Arzu Nedime Vicdan ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (10) ◽  
pp. 3982-3988 ◽  
Author(s):  
Michael N. Dworzak ◽  
Angela Schumich ◽  
Dieter Printz ◽  
Ulrike Pötschger ◽  
Zvenyslava Husak ◽  
...  

Abstract CD20 is expressed in approximately one- half of pediatric acute lymphoblastic leukemia (ALL) cases with B-cell precursor (BCP) origin. We observed that it is occasionally up-regulated during treatment. To understand the impact of this on the potential effectiveness of anti-CD20 immunotherapy, we studied 237 CD10+ pediatric BCP-ALL patients with Berlin-Frankfurt-Munster (BFM)–type therapy. We analyzed CD20 expression changes from diagnosis to end-induction, focusing on sample pairs with more than or equal to 0.1% residual leukemic blasts, and assessed complement-induced cytotoxicity by CD20-targeting with rituximab in vitro. CD20-positivity significantly increased from 45% in initial samples to 81% at end-induction (day 15, 71%). The levels of expression also increased; 52% of cases at end-induction had at least 90% CD20pos leukemic cells, as opposed to 5% at diagnosis (day 15, 20%). CD20 up-regulation was frequent in high-risk patients, patients with high minimal residual disease at end-induction, and patients who suffered later from relapse, but not in TEL/AML1 cases. Notably, up-regulation occurred in viable cells sustaining chemotherapy. In vitro, CD20 up-regulation significantly enhanced rituximab cytotoxicity and could be elicited on prednisolone incubation. In conclusion, CD20 up-regulation is frequently induced in BCP-ALL during induction, and this translates into an acquired state of higher sensitivity to rituximab. This study was registered at http://www.clinicaltrials.gov as #NCT00430118.


2021 ◽  
Vol 10 (12) ◽  
pp. 2634
Author(s):  
Dorothee Winterberg ◽  
Lennart Lenk ◽  
Maren Oßwald ◽  
Fotini Vogiatzi ◽  
Carina Lynn Gehlert ◽  
...  

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent malignancy in children and also occurs in adulthood. Despite high cure rates, BCP-ALL chemotherapy can be highly toxic. This type of toxicity can most likely be reduced by antibody-based immunotherapy targeting the CD19 antigen which is commonly expressed on BCP-ALL cells. In this study, we generated a novel Fc-engineered CD19-targeting IgG1 antibody fused to a single chain tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) domain (CD19-TRAIL). As TRAIL induces apoptosis in tumor cells but not in healthy cells, we hypothesized that CD19-TRAIL would show efficient killing of BCP-ALL cells. CD19-TRAIL showed selective binding capacity and pronounced apoptosis induction in CD19-positive (CD19+) BCP-ALL cell lines in vitro and in vivo. Additionally, CD19-TRAIL significantly prolonged survival of mice transplanted with BCP-ALL patient-derived xenograft (PDX) cells of different cytogenetic backgrounds. Moreover, simultaneous treatment with CD19-TRAIL and Venetoclax (VTX), an inhibitor of the anti-apoptotic protein BCL-2, promoted synergistic apoptosis induction in CD19+ BCP-ALL cells in vitro and prolonged survival of NSG-mice bearing the BCP-ALL cell line REH. Therefore, IgG1-based CD19-TRAIL fusion proteins represent a new potential immunotherapeutic agent against BCP-ALL.


2015 ◽  
Vol 208 (10) ◽  
pp. 492-501 ◽  
Author(s):  
Thayana Conceição Barbosa ◽  
Eugenia Terra-Granado ◽  
Isis M. Quezado Magalhães ◽  
Gustavo Ribeiro Neves ◽  
Andrea Gadelha ◽  
...  

Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Abstract Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.


2011 ◽  
Vol 29 (23) ◽  
pp. 3185-3193 ◽  
Author(s):  
Jana Hof ◽  
Stefanie Krentz ◽  
Claudia van Schewick ◽  
Gabriele Körner ◽  
Shabnam Shalapour ◽  
...  

Purpose In the clinical management of children with relapsed acute lymphoblastic leukemia (ALL), treatment resistance remains a major challenge. Alterations of the TP53 gene are frequently associated with resistance to chemotherapy, but their significance in relapsed childhood ALL has remained controversial because of small studies. Patients and Methods Therefore, we systematically studied 265 first-relapse patients enrolled in the German Acute Lymphoblastic Leukemia Relapse Berlin-Frankfurt-Mü nster 2002 (ALL-REZ BFM 2002) trial for sequence and copy number alterations of the TP53 gene by using direct sequencing and multiplex ligation-dependent probe amplification. Results We observed copy number and sequence alterations of TP53 in 12.4% (27 of 218) of patients with B-cell precursor ALL and 6.4% (three of 47) of patients with T-cell ALL relapse. Backtracking to initial ALL in 23 matched samples revealed that 54% of all TP53 alterations were gained at relapse. Within B-cell precursor ALL, TP53 alterations were consistently associated with nonresponse to chemotherapy (P < .001) and poor event-free survival (P < .001) and overall survival rates (P = .002). TP53 alterations also had a significant impact on survival within intermediate-risk (S2) and high-risk (S3/S4) relapse patients (P = .007 and P = .019, respectively). This prognostic significance of TP53 alterations was confirmed in multivariate analysis. Besides their clinical impact, TP53 alterations were associated with a higher fraction of leukemic cells in S/G2-M phase of the cell cycle at relapse diagnosis. Conclusion Alterations of the TP53 gene are of particular importance in the relapse stage of childhood ALL, in which they independently predict high risk of treatment failure in a significant number of patients. Therefore, they will aid in future risk assessment of children with ALL relapse.


Sign in / Sign up

Export Citation Format

Share Document