scholarly journals Interactions Between c-kit and Stem Cell Factor Are Not Required for B-Cell Development In Vivo

Blood ◽  
1997 ◽  
Vol 89 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Shunichi Takeda ◽  
Takeyuki Shimizu ◽  
Hans-Reimer Rodewald

Abstract The receptor-type tyrosine kinase, c-kit is expressed in hematopoietic stem cells (HSC), myeloid, and lymphoid precursors. In c-kit ligand-deficient mice, absolute numbers of HSC are mildly reduced suggesting that c-kit is not essential for HSC development. However, c-kit− HSC cannot form spleen colonies or reconstitute hematopoietic functions in lethally irradiated recipient mice. Based on in in vitro experiments, a critical role of c-kit in B-cell development was suggested. Here we have investigated the B-cell development of c-kitnull mutant (W/W ) mice in vivo. Furthermore, day 13 fetal liver cells from wild type or W/W mice were transferred into immunodeficient RAG-2−/− mice. Surprisingly, transferred c-kit− cells gave rise to all stages of immature B cells in the bone marrow and subsequently to mature conventional B2, as well as B1, type B cells in the recipients to the same extent as transferred wild type cells. Hence, in contrast to important roles of c-kit in the expansion of HSC and the generation of erythroid and myeloid lineages and T-cell precursors, c-kit− HSC can colonize the recipient bone marrow and differentiate into B cells in the absence of c-kit.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1883-1883
Author(s):  
Oleg Kolupaev ◽  
Michelle West ◽  
Bruce R. Blazar ◽  
Stephen Tilley ◽  
James Coghill ◽  
...  

Abstract Background. Chronic-graft-versus-host disease (cGvHD) continues to be a major complication following allogeneic hematopoietic stem cell transplantation (HSCT). Despite significant progress, mechanisms underlying development of the pathology are yet to be fully understood. Recent studies utilizing mouse models and patient samples have demonstrated a critical role for B cells in GvHD pathogenesis. Bone marrow (BM)-derived B cells can produce auto-reactive antibodies causing tissue fibrosis and multiorgan cGvHD. Impaired B cell homeostasis in the periphery, activation due to abnormally high levels of B cell-activating factor (BAFF), increased survival of auto-reactive B cells and aberrant BCR signaling are shown to be important for disease progression in cGvHD patients. Murine models also highlighted the critical role of germinal center reactions, particularly interactions between T follicular helper (Tfh) cells and B cells for generation of auto-antibodies which are responsible for triggering immune responses and cell-mediated toxicity. A growing body of evidence has emerged highlighting the fact that BM itself is a target organ during acute GvHD (aGvHD) with recent work suggesting a role for donor CD4+ T cells in BM specific aGvHD. Our group has shown that patients with higher numbers of BM B cell precursors were less likely to develop cGvHD after allogeneic HSCT (Fedoriw et al., 2012). These observations indicate clinical relevance of impaired BM B lymphopoiesis for cGvHD development. Methods. In order to investigate the effect of cGvHD on BM B cell development, we used the well-characterized major mismatch B6 into B10.BR model of systemic cGvHD. Recipient mice were treated with cyclophosphamide on day -3 and -2, irradiated with 700 cGy on day -1, and injected with 107 T cell depleted (TCD) BM with or without total splenic T cells (0.5-1x105). Mice were monitored for 30 days, and BM and spleen was harvested and analyzed using flow cytometry. Results. Consistent with patient data, we observed a decrease in the frequency and number of donor-derived uncommitted common lymphoid progenitors (CLP) and B cell progenitors in the BM+ allogeneic T cells group (CLP: 0.17±0.03% vs. 0.06±0.01%, p <0.01; pro B: 2.2 ± 0.5% vs. 0.7 ± 0.3%, p<0.05; pre B: 15.3±1.8% vs. 6.3±2.4%, p<0.05; immature B cells: 5.7±0.7% vs. 2.1±0.7%, p<0.01) (Fig.1). As previously reported for this model, we also found a decrease in the frequency of follicular (FO) B cells (Flynn et al., 2014). We hypothesized that during cGvHD the B cell progenitor BM niche is affected by donor CD4+ T cells leading to impaired B lymphopoiesis. Bone marrow from BM+T cell animals had a significantly higher frequency of CD4+ cells compared to the control group (0.45±0.06% vs. 0.2±0.02%). Depletion of CD4+ T cells using anti-CD4 antibody during the first two weeks after transplant improved pathology scores and prevented weight loss in BM+T cells mice. We also observedpartial recovery of B cell progenitors and Lin-CD45-CD31-CD51+ osteoblasts (OB) in animals treated with anti-CD4 antibodies (pre B 3.5±1.1% vs. 20.4±4.5%, p<0.05; immature B: 1.9±0.9% vs. 3.5±0.3%; OB: 0.8±0.1% vs.1.2±0.2%). A recent study showed that activation and proliferation of conventional T cells in aGvHD model can be prevented by in vivo expansion of regulatory T cells (Tregs) using αDR3 antibody (4C12). We adopted this approach to determine whether Tregs can suppress the cytotoxic effect of donor CD4+ T cells in BM in cGvHD model. Animals that received T cells from 4C12-treated donors had an increase in survival and lower cGvHD pathology scores. These mice also had higher frequency of pro B, pre B, and immature B cells compared to the mice infused with T cells from isotype-treated donors. Conclusions. These studies demonstrate that BM development of B lymphocytes is impaired in a mouse model of systemic cGvHD. Our data suggests that donor-derived CD4+ T cells are involved in the destruction of hematopoietic niches in BM, particularly OB, which support B lymphopoiesis. Moreover, depletion of CD4+ T cells and infusion with in vivo expanded Tregs reduced the severity of cGvHD. Thus, Treg therapy in patients with cGvHD may be important for BM B cell development, and improvement of clinical outcomes. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3465-3465
Author(s):  
Edyta Pawelczyk ◽  
Heba A Degheidy ◽  
Allison L Branchaw ◽  
Kenn Holmbeck ◽  
Steven R Bauer

Abstract Abstract 3465 Introduction: DLK-1(delta-like 1) is a member of the EGF-like homeotic protein family whose expression is known to influence cell fate decisions through cell-cell interactions. It is also known to influence the differentiation of bone marrow stromal cells (BMSC) and hematopoietic stem cells (HSC) in bone marrow. Recently, we reported the essential role of DLK-1 in B cell development, which showed that the absence of DLK-1 led to accumulation of the earliest B cell progenitors (pre-pro B cells or Fraction A (Fr A)) in bone marrow, an altered pattern of B cell development in the spleen, and an altered humoral immune response. The objective of this study was to determine whether alterations in the HSC compartment or the BMSC microenvironment contributed to Fr A accumulation in mdlk1−/− mice. Methods: The mdlk1−/− and wild type bone marrow osteoblast and HSC compartments were analyzed by multicolor flow cytometry and in vitro methyl-cellulose colony forming cell assays. Bone marrow harvested from mdlk1−/− and wild type mice was assessed for BMSCs colony forming efficiency (CFU-F) and cultured. Supernatants from cultured BMSCs were analyzed by protein arrays. Since osteoblasts are an important component of the bone marrow microenvironment, OPN+CD45-TER119-ALP+ osteoblasts were identified in the bone marrow and quantified by flow cytometry. Finally, the femurs of mdlk1−/− and wild type mice were analyzed by micro-computed tomography (uCT) scanning. Results: Using flow cytometry, we observed no statistically significant changes in the HSC and progenitor populations in the absence of DLK-1 in mice at 4 and 16 weeks of age. The results of methyl-cellulose assay confirmed the findings of flow cytometry experiments and showed no statistically significant differences in the number of CFU-G, CFU-GM, and CFU-M of 4 and 16 week old mdlk1−/− mice as compared to wild-type control mice. However, significant alterations in the microenvironment of the mdlkl −/− were observed. CFU-F efficiency of mdlk1−/− bone marrow BMSC isolated from 4 week old mice was significantly decreased when compared to age-matched controls. Furthermore, the uCT scans showed the mineral density of the femoral bone significantly decreased in 4 week old mdlk1−/− mice and the number of osteoblast cells analyzed by flow cytometry was decreased by 10%. The analysis of BMSC supernatants revealed a striking down regulation of factors associated with osteoblast function and differentiation such as osteoactivin, PF-4, Follstatin-like 1, Frizzled-6, IGF-1, M-CSF, DKK-1 and others. Conclusions: Our results indicate that accumulation of the earliest B cell progenitors with DLK-1 ablation is the result of multiple defects in the bone marrow microenvironment including decreased CFU-F, decreased number of osteoblasts, decreased bone mineral density or alterations in factors important for osteoblast function but not from increase in numbers of hematopoietic stem or progenitors cells. Our laboratory is investigating this further. Disclosures: Pawelczyk: Baxter Inc.: currently employed by Baxter Inc. Other.


2001 ◽  
Vol 193 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Tsuneyasu Kaisho ◽  
Kiyoshi Takeda ◽  
Tohru Tsujimura ◽  
Taro Kawai ◽  
Fumiko Nomura ◽  
...  

IκB kinase (IKK) α and β phosphorylate IκB proteins and activate the transcription factor, nuclear factor (NF)-κB. Although both are highly homologous kinases, gene targeting experiments revealed their differential roles in vivo. IKKα is involved in skin and limb morphogenesis, whereas IKKβ is essential for cytokine signaling. To elucidate in vivo roles of IKKα in hematopoietic cells, we have generated bone marrow chimeras by transferring control and IKKα-deficient fetal liver cells. The mature B cell population was decreased in IKKα−/− chimeras. IKKα−/− chimeras also exhibited a decrease of serum immunoglobulin basal level and impaired antigen-specific immune responses. Histologically, they also manifested marked disruption of germinal center formation and splenic microarchitectures that depend on mature B cells. IKKα−/− B cells not only showed impairment of survival and mitogenic responses in vitro, accompanied by decreased, although inducible, NF-κB activity, but also increased turnover rate in vivo. In addition, transgene expression of bcl-2 could only partially rescue impaired B cell development in IKKα−/− chimeras. Taken together, these results demonstrate that IKKα is critically involved in the prevention of cell death and functional development of mature B cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 79-79
Author(s):  
Zev J. Greenberg ◽  
Darlene A. Monlish ◽  
Rachel L. Bartnett ◽  
Jeffrey J. Bednarski ◽  
Laura G. Schuettpelz

The tetraspanin CD53 has been implicated in B cell development and function. Tetraspanins are a family of transmembrane proteins important for organization of the plasma membrane and regulation of cellular migration, adhesion, and activation. CD53 has been shown to be a transcriptional target of EBF1, a critical transcription factor for early B cell development. Additional signaling for early B cell development occurs through the IL-7 receptor (IL-7R), where ligation promotes continued B cell differentiation and pro-survival/anti-apoptotic gene expression. Human deficiency of CD53 results in recurrent infections and reduced serum immunoglobulins. While prior studies have implicated a role for CD53 in regulating mature B cells, its role in early B cell development is not well understood. Herein, we show that CD53 expression rapidly increases throughout B cell development, beginning at the pre-pro-B cell stage. With a CRISPR-generated knockout mouse, we show that Cd53-/- mice have significantly reduced bone marrow (25% fewer, p&lt;0.005), splenic (35% fewer, p&lt;0.05), lymphatic (65% fewer, p&lt;0.0001), and peripheral (30% fewer, p&lt;0.005) B cells compared to wild-type (WT) littermate controls. Mirroring the human phenotype, Cd53-/- mice have significantly reduced serum IgG and IgM (40% reduced, p&lt;0.01). In addition, hematopoietic stem cells isolated from Cd53-/- mice give rise to 30% fewer B cells compared to controls in vitro (p=0.005). Analysis of bone marrow B cell development demonstrates that this loss of B cells originates with early B cell progenitors, which express nearly 50% less IL-7Ra than WT and reduced IL-7 signaling. Using mass cytometry, we identified differential signaling pathways downstream of IL-7R in B cell progenitors. Specifically, we observe impaired PI3K and STAT5 activation in pre-pro- and pro-B cells in the absence of CD53, with a consequent increase in apoptosis in these populations (p&lt;0.01). Decreased STAT5 phosphorylation was confirmed by western blot. Finally, co-immunoprecipitation studies demonstrate a physical interaction between CD53 and IL-7Ra, suggesting that these proteins associate at the cell surface. Together, these data suggest a novel role for CD53 during IL-7 signaling to promote early B cell development. Ongoing studies are focused on determining the CD53 residues required for interaction with IL-7R. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 226-226 ◽  
Author(s):  
Min Ye ◽  
Olga Ermaermakova-Cirilli ◽  
Thomas Graf

Abstract Mice deficient of the ETS-family transcription factor PU.1 lack B cells as well as macrophages. While most macrophage specific genes are known to be regulated by high levels of PU.1, the reason for the defect in B cell formation is not known. Here we analyzed a mouse strain in which a floxed version of the PU.1 gene, surrounding exon 4 and 5, which encode the DNA, binding and PEST domains (developed by C. Somoza and D. Tenen), was excised by Cre mediated recombination. As expected, this strain lacks both B cells and macrophages and die at birth. Surprisingly, however, we were able to establish lymphoid cell lines from fetal livers of these mice (day 14 to day 18), which proliferated on S17 stromal cells supplemented with IL-7 and stem cell factor. These cells expressed the B lineage cell surface markers CD19, CD43, BP-1 and CD24, but not B220. They also expressed B cell transcription factors, EBF, E47, Pax5, and their target genes, Rag1, IL7R, λ5 and v-preB, as detected by RT-PCR, exhibited DJ and VDJ immunoglobulin heavy chain rearrangements, and expressed IgM after IL-7 withdrawal. We then tested the effect of PU.1 deletion in B cells in adult animals by crossing the floxed PU.1 strain with a CD19 Cre mouse line. The spleen and peripheral blood (but not bone marrow) of these mice contained B cells that were CD19+ IgMlow, IgDhigh but B220 negative and instead expressed CD43. Thus PU.1 is not essential for immunoglobulin production and late B cell development. Although PU.1−/− fetal liver cells can give rise to cells, resembling Pre-B in vitro, the process of B cell formation was delayed by almost 12 days, compared with wt fetal liver, and the efficiency was reduced approximately 25-fold. In addition, PU.1 deficient B cells demonstrated an impaired ability to engraft into the bone marrow, when injected into irradiated SCID mice. We have found that PU.1 deficient B progenitors showed reduced or undetectable levels of the SDF1 receptor CXCR4, a receptor that has been implicated in B cell homing. Taken together, our observations suggest that PU.1 plays two different roles during B cell development: for early B cell formation and for proper migration and engraftment, which might be mediated through regulation of CXCR4 expression.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1533-1533
Author(s):  
David T Yang ◽  
Shelly Wuerzberger-Davis ◽  
Yuhong Chen ◽  
Mei Yu ◽  
Hu Zeng ◽  
...  

Abstract Activity of the nuclear factor-κB (NF-κB) family of transcription factors is tightly regulated by its inhibitor, IκBα, through cytoplasmic localization of latent NF-κB: IκBα complexes. This arrangement is essential for efficient signal-inducible activation and regulation of biologic functions. Maintenance of cytoplasmic localization of latent NF-κB: IκBα complex requires continuous nuclear export that is dependent on the N-terminal nuclear export sequence (N-NES) of IκBα. While these mechanisms have been elucidated through in vitro studies, the biological significance of this “nucleocytoplasmic shuttling” has yet to be evaluated in vivo. To address this, we derived mice harboring germ-line M45A, L48A, and I52A amino acid substitutions in the N-NES of IκBα. In splenic B-cells, the disrupted N-NES caused constitutive nuclear accumulation of IκBα and inactive c-Rel containing complexes but surprisingly not IκBα: p65 complexes. Since p65 contains a NES sequence and c-Rel does not, nuclear export of N-NES mutant IκBα:NF-κB complexes appear to be NF-κB family member dependent. Functionally, NF-κB activity in splenic B-cells after stimulation with IgM or LPS was clearly reduced in the mutants compared to wild-type by electrophoretic mobility shift assay. B-cell development in the bone marrow of mice harboring the mutation was impaired, showing a preponderance of pro/pre B-cells and few mature B-cells compared to their wild type littermates (p &lt; 0.001). Concordantly, there were significantly fewer B-cells in the spleen (p &lt; 0.05) and lymph nodes (p &lt; 0.01) of the mutant mice. Additionally, populations of T2, follicular (FO), and marginal zone (MZ) B-cells, which represent mature B-cells in the spleen, were also reduced in the mutant mice (p &lt; 0.001). To demonstrate that this B-cell maturation defect in IκBα mutant mice was B-cell intrinsic, sublethally irradiated Jak3-deficient mice were transplanted with BM from either wild-type or mutant mice. B-cell development in mice transplanted with mutant donors was impaired relative to those with wild-type donors in a fashion identical to that of the primary mutants described above. Finally, severe phenotypes in inguinal lymph nodes and Peyer’s patch development were present, with mutant mice frequently lacking these secondary organs/tissues, the underlying mechanisms of which are currently being investigated. In conclusion, our findings uncover an in vivo mechanism controlling NF-κB localization and its essential role in the generation of mature B-cells and certain secondary lymphoid organs.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 282-282
Author(s):  
Shuangmin Zhang ◽  
Yi Zheng ◽  
Richard Lang ◽  
Fukun Guo

Abstract Abstract 282 RhoA GTPase is an intracellular signal transducer capable of regulating a wide range of cell functions including cytoskeleton dynamics, proliferation, and survival. In lymphocytes, studies by using dominant negative mutant or C3 transferase expressing transgenic mice suggest that RhoA is involved in TCR and BCR signaling and related T cell functions such as polarization, migration, survival, and proliferation. To date, the physiological role of RhoA in lymphocyte development remains unclear. In this study, we have achieved T cell, B cell, and hematopoietic stem cell-specific deletion of RhoA by conditional gene targeting with CD2, CD19 and Mx1 promoter-driven Cre expression, respectively, in the RhoAloxP/loxP mice. First, we found that RhoA gene disruption in early T cells caused a drastic decrease in thymocyte cellularity, with the numbers of CD4−CD8− double negative (DN), CD4+CD8+ double positive (DP), CD4+CD8− single positive (SP), and CD4−CD8+ SP T cells decreased by 88.8% ± 6.0%, 99.4% ± 1.0%, 99.3% ± 1.2%, and 98.6% ± 2.0%, respectively. Among DN subpopulations, CD44+CD25− (DN1), CD44+CD25+ (DN2), CD44−CD25+ (DN3), and CD44−CD25− (DN4) cells were reduced by 91.7% ± 6.0%, 54.9% ± 27.7%, 50.9% ± 33.3%, and 96.7% ± 3.4%, respectively. Further, RhoA knockout led to a significant loss of DP thymocytes at the initial stage (CD69highTCRint) of positive selection, suggesting that RhoA is required for positive selection. The decreased thymocyte cellularity in mutant mice is associated with increased apoptosis of all thymic T lineages. RhoA deficiency also resulted in a perturbation in thymocyte cell cycle progression as manifested by increased BrdU incorporation in DN1 and DN2 cells and decreased BrdU incorporation in DN4 and DP cells. Concomitantly, RhoA-deficient thymocytes showed a 59.8% ± 26.3% reduction in proliferative potential in response to TCR crosslinking. Western blot analysis revealed that the activities of ZAP70, LAT, Akt, Erk, and p38 were impaired in RhoA-/- thymocytes. In periphery, spleens of the RhoA null mice contained 7.4% ± 8.0% of CD4+ T cells and 3.7% ± 2.7% of CD8+ T cells compared with that of wild type (WT) mice. Loss of peripheral mature T cells in mutant mice is reflected by a marked reduction of naive T cells, whereas effector and memory phenotype cells were marginally affected by RhoA deficiency. RhoA-deficient naïve T cells were more susceptible to apoptosis, suggesting that homeostatic defect of naïve T cells in RhoA-/- mice is attributed to impaired cell survival. Abrogation of RhoA caused an increased in vivo BrdU incorporation in naïve T cell compartments. Thus, RhoA deficiency induces naïve T cell homeostatic proliferation, possibly due to a compensatory effect of lymphopenia. In contrast to that in thymocytes, Erk was constitutively activated in RhoA-deficient splenic T cells. These observations implicate RhoA in the multiple stages of T cell development and the proper assembly of early TCR signaling complex. Second, deletion of RhoA in pre-proB cells had no effect on early B cell development in bone marrow but significantly inhibited late B cell development in spleen, resulting in 78.2% ± 13.6%, 78.6% ± 16.9%, and 93.2% ± 3.4% reduction in transitional, follicular, and marginal zone B cells, respectively. Plasma cells in spleen were decreased by 50.9 % ± 25.9% in RhoA null mice. However, we did not detect any changes in survival of in vivo RhoA-/- B cells or RhoA-/- B cells cultured in vitro with survival factor BAFF. Distinct from previously characterized Cdc42 knockout mice, BAFF-R expression was not altered in RhoA-/- B cells. Moreover, RhoA-/- B cells appeared to be normal in proliferation and Akt and Erk activation in response to BCR crosslinking. These data suggest that RhoA is important for late B cell development through regulation of differentiation but not cell survival or proliferation. Finally, deletion of RhoA from hematopoietic stem cells did not affect common lymphoid progenitor production, indicating that RhoA is not required for early lymphoid progenitor commitment. Taken together, these lineage-specific mouse genetic studies demonstrate that RhoA critically regulates T and B cell development by distinct cellular mechanisms at multiple stages of lymphopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 220-220 ◽  
Author(s):  
Corey J Cain ◽  
Randell Rueda ◽  
Bryce T McLelland ◽  
Nicole Collette ◽  
Gabriela Loots ◽  
...  

Abstract Abstract 220 Hematopoietic cell fate decisions are dependent on their localized microenvironmental niche. In the bone, endosteal osteoblasts have been shown to support hematopoietic stem cells (HSC) self-renewal, as demonstrated by transgenic and knockout mouse models in which osteoblast populations were increased or decreased. In addition, Wnt signaling and the Wnt antagonist Dkk-1 have been implicated in various aspects of hematopoiesis and HSC self-renewal. Sclerostin (Sost) is a secreted protein that is primarily expressed by fully mature osteocytes and acts on osteoblasts as a negative regulator of bone growth, by antagonizing Wnt signaling by its binding to the Wnt co-receptors Lrp4, Lrp5, and/or Lrp6. Here, we investigated the role of Sost on hematopoiesis in the bone marrow niche. Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in hypermineralized bones with small bone marrow cavities. As such, Sost−/− mice contain markedly reduced numbers of CD45+hematopoietic cells in the bone marrow. Since hematopoietic stem cell activity is dependent on osteoblast function, we examined whether the hyperactive osteoblast activity in Sost−/− mice influences the numbers of hematopoietic stem cells, lymphoid progenitor cells and myeloid progenitor cells in the bone marrow. Surprisingly, no differences were observed in hematopoietic stem and progenitor cell frequency and cell number. However, we found the bone marrow of Sost−/− mice to be depleted of B cells, and this reduction can be attributed to premature apoptosis beginning at the pre-pro-B cell stage. Examination of Sost expression showed that no hematopoietic cells expressed Sost, however, pre-pro, immature and recirculating B cells expressed Lrp5 and Lrp6. These gene expression patterns suggested that the defect in B cell development in Sost−/− mice is non-cell autonomous and that absence of Sost could affect Wnt signaling in these populations. We observed that the expression of Wnt target genes CCND1 and Lef-1 were not affected by the absence of Sost, but c-Myc was significantly upregulated in recirculating B cells in the bone marrow. We also observed a significant decrease in CXCL12 expression in the bone marrow stroma in Sost−/− mice, consistent with their inability to adequately support B cell development. Taken together, our results indicate that the B cell developmental defects in Sost−/− mice are non-cell autonomous, and we are currently performing reciprocal bone marrow transplantation experiments to further support this hypothesis. Our studies demonstrate a novel role for Sost in the regulation of B cell development in the bone marrow, and demonstrate that distinct Wnt antagonists play specific roles in the regulation of hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1569-1569
Author(s):  
Kilannin Krysiak ◽  
Justin Tibbitts ◽  
Matthew J. Walter

Abstract Myeloid and erythroid differentiation defects and cytopenias are most commonly described in myelodysplastic syndromes (MDS), however, a reduction in B-cell progenitors exists. The genetic events contributing to this reduction are poorly understood. Interstitial deletion or loss of one copy of the long arm of chromosome 5 (del5q) is the most common cytogenetic abnormality associated with MDS. Two commonly deleted regions on del(5q) have been described and no biallelic mutations have been identified implicating haploinsufficiency of genes on this interval as a driving mechanism. We, and others, have identified several del(5q) candidate genes, including RPS14, EGR1, CTNNA1, APC, NPM1, DIAPH1, miR145, miR146a, and HSPA9. Consistent with haploinsufficiency, HSPA9 mRNA levels are 50% reduced in del(5q) patients. We previously showed that knockdown of Hspa9by shRNA in a murine bone marrow transplant model resulted in a significant reduction in murine B-cells in the bone marrow, spleen and peripheral blood. To further characterize the role of Hspa9 in hematopoiesis, we created Hspa9 heterozygous mice (Hspa9+/-). Heterozygotes express 50% less Hspa9 protein and are born at normal Mendelian frequencies (N>100). No significant differences in mature lineage markers, complete blood counts, and hematopoietic organ cellularity, have been identified up to 12 months of age. However, as early as 2 months of age, Hspa9+/- mice show a significant reduction in CFU-PreB colonies compared to their wild-type littermates, indicating B-cell progenitor defects (14 vs. 48 colonies/100,000 bone marrow cells plated, respectively, N=10 mice/genotype, p<0.001). Following long-term engraftment of transplanted bone marrow cells from Hspa9+/-or littermate controls into lethally irradiated recipients, we also observed a 5.8-fold reduction in bone marrow CFU-PreB colonies (N=7-9 mice/genotype, p=0.002), confirming the B-cell progenitor defect is hematopoietic cell-intrinsic. Despite the reduction in CFU-PreB colony numbers, frequencies of freshly isolated early B-cell progenitor and precursor populations in the bone marrow and spleen of Hspa9+/- mice are not different than wild-type littermate controls when assessed by flow cytometry (common lymphoid progenitor, Hardy fractions A-F). We hypothesized that these mice were able to compensate for B-cell alterations caused by loss of Hspa9 in vivo. Consistent with our hypothesis, the reduction in CFU-PreB colony numbers was partially rescued by increasing the concentration of IL-7 in the media. Hspa9+/- colony numbers increased 1.8 fold when the IL-7 concentration was increased from 10ng/mL to 50ng/mL compared to 0.80 fold for wild-type littermates (p=0.03, N=6 mice/genotype). This effect was unique to IL-7. Adding increasing concentrations of Flt-3 ligand, another cytokine that contributes to early B-cell development, did not alter CFU-PreB colony formation. We isolated B220+ cells from Day 7 CFU-PreB cultures for gene expression array analysis and observe reduced expression of genes promoting B-cell proliferation and activation in Hspa9+/- compared to Hspa9+/+ cells. Since IL-7 is the only supportive cytokine in the methylcellulose media, can partially rescue the reduced CFU-PreB phenotype, and is required for early B-cell development and survival, we hypothesized that Hspa9 haploinsufficiency inhibits transduction of IL-7 signaling. We tested this hypothesis using an IL-7 dependent mouse B-cell line (B7 cells; Ba/F3 cells that stably express the IL-7 receptor). Knockdown of Hspa9 by siRNAs resulted in a 8-fold reduction in cell number after 4 days in culture (p=0.004, confirmed with two independent siRNAs) and was associated with an increase in apoptosis and reduction in cells in S-phase of the cell cycle. Knockdown of Hspa9 in B7 cells resulted in reduced levels of phosphorylated Stat5, an immediate downstream target of IL-7 receptor stimulation, compared to cells treated with a non-targeting siRNA (measured at 5, 10, 15 and 30 minutes following 10ng/mL IL-7 stimulation, p≤0.03). Ongoing studies will further interrogate the effects of Hsap9 knockdown on Jak-Stat signaling. Collectively, these data implicate that loss of HSPA9 alters IL-7 signaling, potentially contributing to the reduction of B-cell progenitors observed in patients with del(5q)-associated MDS. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2655-2655 ◽  
Author(s):  
Courtney L. Jones ◽  
Gregory Kirkpatrick ◽  
Courtney Fleenor ◽  
Welsh Seth ◽  
Leila J Noetzli ◽  
...  

Abstract Recent studies from our group and others have revealed a role for ETV6 germline mutations in the predisposition to ALL. Although ETV6 is among the most commonly mutated genes in ALL, its mechanistic role in leukemogenesis remains unclear. ETV6 is an ETS family transcription factor. ETV6 regulates gene transcription through homo- and hetero- oligomerization with other ETS family members and transcriptional repressors. The germline mutation (P214L amino acid change) identified by our group and others impairs the transcriptional activity and nuclear localization of ETV6 in a dominant negative fashion. The goal of this project is to determine the role of ETV6 in early B cell development and define how germline ETV6 mutations result in predisposition to leukemia. To identify functions of ETV6 in B cell development, we queried the gene expression commons database for evidence of Etv6 expression during B cell development. Etv6 is highly expressed in hematopoietic stem and lymphoid progenitor cells through the pre-pro-B stage (FrA), but its expression is significantly reduced in fraction B and thereafter (P<0.0001). To confirm relative patterns of Etv6 and Pax5 expression in developing B cells, we isolated bone marrow (BM) from wild type (WT) mice and fractionated cells committed to the B cell lineage via B220+ and CD43+ staining by flow cytometry and then separated into the following fractions: Fraction A (CD24low, CD19-), Fraction B (CD19+, CD24+, BP1-) and Fraction C (CD19+ CD24+ BP1+). Etv6 expression decreases as B cells develop and is negatively correlated with Pax5 expression (r2=.9993; P= 0.0167). We next confirmed the expression patterns of ETV6 and PAX5 during B cell development in human samples. We found that ETV6 expression was higher in the early B cell fraction (CD10+, CD34+, CD19-, and CD20-) compared to the preB cell fraction (CD10+, CD34-, CD19+, CD20-). Conversely, we observed that PAX5 expression was higher in the preB cell fraction compared to the early B cell fraction. To determine if a function relationship exists between ETV6 and Pax5 we overexpressed an empty vector (MiG), wild type (WT) ETV6 and ETV6 P214L in a murine lymphoid progenitor line (Ba/F3). ETV6, but not ETV6 P214L overexpression significantly decreased Pax5 expression (P≤0.05). To further interrogate the role of ETV6 in regulating Pax5 transcription we measured the association of ETV6 with putative ETS factor binding sites (GGAA sequence) within the Pax5 transcription start site (TSS) using ChIP-PCR. ETV6 is associated with the proximal GGAA site 72 base pairs upstream of the Pax5 TSS, but not GGAA sites further from the TSS. In addition, the transcriptional repressors SIN3A and HDAC3 were detected on the same regions of the Pax5 locus. We next determined the consequences of ETV6 mutation on the recruitment of ETV6, SIN3A, and HDAC3 to the Pax5 locus by performing ChIP-PCR in Ba/F3 cells that express a FLAG-tagged WT ETV6 or ETV6 P214L. We detected association of ETV6, SIN3A and HDAC3 with the proximal GGAA site upon expression of WT ETV6, but not ETV6 P214L. We conclude that ETV6, SIN3A and HDAC3 are responsible for the repression of Pax5 transcription. Moreover, mutant ETV6 inhibits the ability of normal ETV6 to bind and recruit SIN3A and HDAC3 to the Pax5 locus. Finally, we determined if the recruitment of SIN3A and HDACs to the Pax5 locus was essential to repression of Pax5 by WT ETV6 by knocking out SIN3A and inhibiting HDACs using pan HDAC inhibitor, SAHA and measuring Pax5 expression by RT-PCR. We found that upon SIN3A knockout or HDAC inhibition Pax5 expression was no longer repressed upon WT ETV6 overexpression. To determine the consequences of ETV6 P214L expression on B cell development, we generated a transgenic mouse expressing the P214L mutation in the endogenous ETV6 gene. Preliminary data suggests that these mice have thrombocytopenia, similar to patients with germline ETV6 mutation. In addition, mice with the ETV6 P214L mutation displayed reduced level of cKIT expression on the FrA B cell population. Further studies will be necessary to understand the consequences of reduced cKIT expression to overall B cell development and if this cKIT reduction is linked to aberrant Pax5 expression. In conclusion, ETV6 regulates Pax5 expression through the recruitment of SIN3A and HDAC3 to the Pax5 locus. These findings are significant because Pax5 misregulation results in a B cell development halt, lineage infidelity and leukemogenesis. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document