Gene Targeting of RhoA Reveals Its Essential Role In Lymphopoiesis

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 282-282
Author(s):  
Shuangmin Zhang ◽  
Yi Zheng ◽  
Richard Lang ◽  
Fukun Guo

Abstract Abstract 282 RhoA GTPase is an intracellular signal transducer capable of regulating a wide range of cell functions including cytoskeleton dynamics, proliferation, and survival. In lymphocytes, studies by using dominant negative mutant or C3 transferase expressing transgenic mice suggest that RhoA is involved in TCR and BCR signaling and related T cell functions such as polarization, migration, survival, and proliferation. To date, the physiological role of RhoA in lymphocyte development remains unclear. In this study, we have achieved T cell, B cell, and hematopoietic stem cell-specific deletion of RhoA by conditional gene targeting with CD2, CD19 and Mx1 promoter-driven Cre expression, respectively, in the RhoAloxP/loxP mice. First, we found that RhoA gene disruption in early T cells caused a drastic decrease in thymocyte cellularity, with the numbers of CD4−CD8− double negative (DN), CD4+CD8+ double positive (DP), CD4+CD8− single positive (SP), and CD4−CD8+ SP T cells decreased by 88.8% ± 6.0%, 99.4% ± 1.0%, 99.3% ± 1.2%, and 98.6% ± 2.0%, respectively. Among DN subpopulations, CD44+CD25− (DN1), CD44+CD25+ (DN2), CD44−CD25+ (DN3), and CD44−CD25− (DN4) cells were reduced by 91.7% ± 6.0%, 54.9% ± 27.7%, 50.9% ± 33.3%, and 96.7% ± 3.4%, respectively. Further, RhoA knockout led to a significant loss of DP thymocytes at the initial stage (CD69highTCRint) of positive selection, suggesting that RhoA is required for positive selection. The decreased thymocyte cellularity in mutant mice is associated with increased apoptosis of all thymic T lineages. RhoA deficiency also resulted in a perturbation in thymocyte cell cycle progression as manifested by increased BrdU incorporation in DN1 and DN2 cells and decreased BrdU incorporation in DN4 and DP cells. Concomitantly, RhoA-deficient thymocytes showed a 59.8% ± 26.3% reduction in proliferative potential in response to TCR crosslinking. Western blot analysis revealed that the activities of ZAP70, LAT, Akt, Erk, and p38 were impaired in RhoA-/- thymocytes. In periphery, spleens of the RhoA null mice contained 7.4% ± 8.0% of CD4+ T cells and 3.7% ± 2.7% of CD8+ T cells compared with that of wild type (WT) mice. Loss of peripheral mature T cells in mutant mice is reflected by a marked reduction of naive T cells, whereas effector and memory phenotype cells were marginally affected by RhoA deficiency. RhoA-deficient naïve T cells were more susceptible to apoptosis, suggesting that homeostatic defect of naïve T cells in RhoA-/- mice is attributed to impaired cell survival. Abrogation of RhoA caused an increased in vivo BrdU incorporation in naïve T cell compartments. Thus, RhoA deficiency induces naïve T cell homeostatic proliferation, possibly due to a compensatory effect of lymphopenia. In contrast to that in thymocytes, Erk was constitutively activated in RhoA-deficient splenic T cells. These observations implicate RhoA in the multiple stages of T cell development and the proper assembly of early TCR signaling complex. Second, deletion of RhoA in pre-proB cells had no effect on early B cell development in bone marrow but significantly inhibited late B cell development in spleen, resulting in 78.2% ± 13.6%, 78.6% ± 16.9%, and 93.2% ± 3.4% reduction in transitional, follicular, and marginal zone B cells, respectively. Plasma cells in spleen were decreased by 50.9 % ± 25.9% in RhoA null mice. However, we did not detect any changes in survival of in vivo RhoA-/- B cells or RhoA-/- B cells cultured in vitro with survival factor BAFF. Distinct from previously characterized Cdc42 knockout mice, BAFF-R expression was not altered in RhoA-/- B cells. Moreover, RhoA-/- B cells appeared to be normal in proliferation and Akt and Erk activation in response to BCR crosslinking. These data suggest that RhoA is important for late B cell development through regulation of differentiation but not cell survival or proliferation. Finally, deletion of RhoA from hematopoietic stem cells did not affect common lymphoid progenitor production, indicating that RhoA is not required for early lymphoid progenitor commitment. Taken together, these lineage-specific mouse genetic studies demonstrate that RhoA critically regulates T and B cell development by distinct cellular mechanisms at multiple stages of lymphopoiesis. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1883-1883
Author(s):  
Oleg Kolupaev ◽  
Michelle West ◽  
Bruce R. Blazar ◽  
Stephen Tilley ◽  
James Coghill ◽  
...  

Abstract Background. Chronic-graft-versus-host disease (cGvHD) continues to be a major complication following allogeneic hematopoietic stem cell transplantation (HSCT). Despite significant progress, mechanisms underlying development of the pathology are yet to be fully understood. Recent studies utilizing mouse models and patient samples have demonstrated a critical role for B cells in GvHD pathogenesis. Bone marrow (BM)-derived B cells can produce auto-reactive antibodies causing tissue fibrosis and multiorgan cGvHD. Impaired B cell homeostasis in the periphery, activation due to abnormally high levels of B cell-activating factor (BAFF), increased survival of auto-reactive B cells and aberrant BCR signaling are shown to be important for disease progression in cGvHD patients. Murine models also highlighted the critical role of germinal center reactions, particularly interactions between T follicular helper (Tfh) cells and B cells for generation of auto-antibodies which are responsible for triggering immune responses and cell-mediated toxicity. A growing body of evidence has emerged highlighting the fact that BM itself is a target organ during acute GvHD (aGvHD) with recent work suggesting a role for donor CD4+ T cells in BM specific aGvHD. Our group has shown that patients with higher numbers of BM B cell precursors were less likely to develop cGvHD after allogeneic HSCT (Fedoriw et al., 2012). These observations indicate clinical relevance of impaired BM B lymphopoiesis for cGvHD development. Methods. In order to investigate the effect of cGvHD on BM B cell development, we used the well-characterized major mismatch B6 into B10.BR model of systemic cGvHD. Recipient mice were treated with cyclophosphamide on day -3 and -2, irradiated with 700 cGy on day -1, and injected with 107 T cell depleted (TCD) BM with or without total splenic T cells (0.5-1x105). Mice were monitored for 30 days, and BM and spleen was harvested and analyzed using flow cytometry. Results. Consistent with patient data, we observed a decrease in the frequency and number of donor-derived uncommitted common lymphoid progenitors (CLP) and B cell progenitors in the BM+ allogeneic T cells group (CLP: 0.17±0.03% vs. 0.06±0.01%, p <0.01; pro B: 2.2 ± 0.5% vs. 0.7 ± 0.3%, p<0.05; pre B: 15.3±1.8% vs. 6.3±2.4%, p<0.05; immature B cells: 5.7±0.7% vs. 2.1±0.7%, p<0.01) (Fig.1). As previously reported for this model, we also found a decrease in the frequency of follicular (FO) B cells (Flynn et al., 2014). We hypothesized that during cGvHD the B cell progenitor BM niche is affected by donor CD4+ T cells leading to impaired B lymphopoiesis. Bone marrow from BM+T cell animals had a significantly higher frequency of CD4+ cells compared to the control group (0.45±0.06% vs. 0.2±0.02%). Depletion of CD4+ T cells using anti-CD4 antibody during the first two weeks after transplant improved pathology scores and prevented weight loss in BM+T cells mice. We also observedpartial recovery of B cell progenitors and Lin-CD45-CD31-CD51+ osteoblasts (OB) in animals treated with anti-CD4 antibodies (pre B 3.5±1.1% vs. 20.4±4.5%, p<0.05; immature B: 1.9±0.9% vs. 3.5±0.3%; OB: 0.8±0.1% vs.1.2±0.2%). A recent study showed that activation and proliferation of conventional T cells in aGvHD model can be prevented by in vivo expansion of regulatory T cells (Tregs) using αDR3 antibody (4C12). We adopted this approach to determine whether Tregs can suppress the cytotoxic effect of donor CD4+ T cells in BM in cGvHD model. Animals that received T cells from 4C12-treated donors had an increase in survival and lower cGvHD pathology scores. These mice also had higher frequency of pro B, pre B, and immature B cells compared to the mice infused with T cells from isotype-treated donors. Conclusions. These studies demonstrate that BM development of B lymphocytes is impaired in a mouse model of systemic cGvHD. Our data suggests that donor-derived CD4+ T cells are involved in the destruction of hematopoietic niches in BM, particularly OB, which support B lymphopoiesis. Moreover, depletion of CD4+ T cells and infusion with in vivo expanded Tregs reduced the severity of cGvHD. Thus, Treg therapy in patients with cGvHD may be important for BM B cell development, and improvement of clinical outcomes. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 124-124
Author(s):  
Ivan Maillard ◽  
Laleh Talebian ◽  
Zhe Li ◽  
Yalin Guo ◽  
Daisuke Sugiyama ◽  
...  

Abstract The family of core binding factors includes the DNA-binding subunits Runx1-3 and the common non-DNA binding partner CBFβ. Runx1 and CBFβ are essential for the emergence of hematopoietic stem cells during fetal development, but not for stem cell maintenance during later ontogeny. Runx1 is also required for megakaryocyte differentiation, B cell development, and for the DN2 to DN3 transition in thymocyte development. Runx2/CBFβ are critical for normal osteogenesis, and Runx3 for CD4 silencing in CD8+ T cells, but their contribution to other steps of hematopoietic development is unknown. To examine the collective role of core binding factors in hematopoiesis, we generated a hypomorphic Cbfb allele (Cbfbrss). CBFβ protein levels were reduced by approximately 2–3 fold in fetuses homozygous for the Cbfbrss allele (Cbfbrss/rss), and 3–4 fold in fetuses carrying one hypomorphic and one knockout allele (Cbfbrss/−). Cbfbrss/rss and Cbfbrss/− fetuses had normal erythroid and B cell development, and relatively mild abnormalities in megakaryocyte and granulocyte differentiation. In contrast, T cell development was very sensitive to an incremental reduction of CBFβ levels: mature thymocytes were decreased in Cbfbrss/rss fetuses, and virtually absent in Cbfbrss/−fetuses. We next assessed the development of Cbfbrss/rss and Cbfbrss/− fetal liver progenitors after transplantation to irradiated adult recipients, in competition with wild-type (wt) bone marrow cells. Wt, Cbfbrss/rss and Cbfbrss/− fetal progenitors replenished the erythroid, myeloid and B cell compartments equally well. The overall development of Cbfbrss/rss T cells was preserved, although CD4 expression was derepressed in double negative thymocytes. In Cbfbrss/− chimeras, mature thymocytes were entirely derived from competitor cells. Furthermore, the developmental block in Cbfbrss/− progenitors was present at the earliest stages of T cell development within the DN1 (ETP) and DN2 subsets. Our data define a critical CBFβ threshold for normal T cell development, and they situate an essential role of core binding factors during the earliest stages of T cell development. In addition, early thymopoiesis appeared more severely affected by reduced CBFβ dosage than by the lack of Runx1 (Ichikawa et al., Nat Med 2004; Growney et al., Blood 2005), suggesting that Runx2/3 may contribute to core binding factor activity in the T cell lineage.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 75-75 ◽  
Author(s):  
Sung-UK Lee ◽  
Manami Maeda ◽  
Nagisa Sakurai ◽  
Julie Teruya-Feldstein ◽  
Freddy Radtke ◽  
...  

Abstract The proto-oncogene LRF, encoded by the Zbtb7a gene, is a transcriptional repressor that belongs to the POK (POZ/BTB and KrŸppel) protein family. Along with its oncogenic property, recent evidence has shown that POK proteins play distinct roles in hematopoiesis and immune system development. Conditional inactivation of the LRF gene in mouse hematopoietic stem cells (HSCs) results in the development of CD4/8 double positive (DP) T cells in bone marrow (BM) at the expense of B cell development (Maeda et al. Science 2007). While LRF acts as a master regulator of B versus T lymphoid lineage fate decision by suppressing Notch-mediated signals, it is unclear as to which Notch genes LRF targets and whether LRF is required for the maintenance of HSCs per se. To address these questions, we analyzed HSC/progenitor population of conditional LRF knockout mice (LRFF/FMx1-Cre) as well as LRF/Notch1 double conditional knockout mice (LRFF/FNotch1F/FMx1-Cre). In the absence of Notch1, LRF deficient HSCs/lymphoid progenitors (LRFF/FNotch1F/FMx1-Cre) could successfully give rise to early B cells (Pro B, Pre B and immature B). There were no abnormal DP-T cells seen in the BM, suggesting that LRF primarily targets Notch1 at the HSC/progenitor stages to maintain normal lymphoid development. However the loss of the LRF gene did not rescue the phenotype of Notch1F/FMx1-Cre mice (Radtke et al. Immunity 1999). Immature B cell development in the thymus was still observed in LRFF/FNotch1F/FMx1-Cre mice, suggesting that LRF acts genetically upstream of Notch1 during the early lymphocyte development. Notably, LRFF/FNotch1F/FMx1-Cre mice still exhibit a block of terminal erythroid differentiation and macrocytic anemia as seen in LRFF/FMx1-Cre mice. Thus, LRF is required for erythropoiesis via Notch-independent mechanisms. To further identify distinct HSC/progenitor compartments, we performed multicolor-FACS analysis utilizing antibodies for SLAM family members (CD41, CD48 and CD150), c-Kit, Sca-1, Flt3, IL7R-α, Vcam-1 and lineage markers (Lin). Remarkably, no Flt3 positive HSC/progenitors were observed in LRFF/FMx1-Cre mice. While IL7R-α+ T cell precursors (IL7Rα+Lin-Sca1+c-Kit+Flt3-), which were previously reported as common lymphoid progenitors (Maeda et al. Science 2007), existed abundantly. Absolute numbers of the long-term HSCs (LT-HSCs), defined as CD150+CD48-Flt3-Vcam-1+IL7Rα-LSK (Lin-Sca1+c-Kit+), were significantly reduced in LRFF/FMx1-Cre mice one month after pIpC injection. At the same time, CD150+CD48high+Flt3-Vcam-1-IL7Rα-LSK cells, which are likely T-committed lymphoid precursors, are increased in LRFF/FMx1-Cre mice. To investigate the presence of a population of quiescent HSC/progenitors, we treated LRFF/FMx1-Cre mice with 5-fluorouracil (5-FU), a S phase-specific cytotoxic chemotherapeutic agent, and examined recovery of HSCs in BM. LT-HSCs in LRFF/FMx1-Cre mice did not repopulate as many as their counterpart one month after 5-FU treatment. Our data indicates that LRF deficient HSCs are unable to maintain its quiescent status and are on the state of cell differentiation toward T cells due to the high Notch activity. In fact, loss of the Notch1 gene partially rescued reduced LT-HSCs numbers seen in LRFF/FMx1-Cre mice.


Blood ◽  
2009 ◽  
Vol 114 (14) ◽  
pp. 2909-2916 ◽  
Author(s):  
Fukun Guo ◽  
Chinavenmeni S. Velu ◽  
H. Leighton Grimes ◽  
Yi Zheng

Cdc42 is a member of the Rho GTPase family that has been implicated in several cell functions including proliferation and migration, but its physiologic role needs to be dissected in each cell type. We achieved B-cell and hematopoietic stem cell deletion of Cdc42 by conditional gene targeting in mice. Deletion of Cdc42 from proB/preB-cell stage significantly blocked B-cell development at T1 and later stages, resulting in reduced mature B-cell populations and reduced antigen-specific immunoglobulin M (IgM), IgG1, and IgG3 production. The Cdc42−/− B cells, themselves, were abnormal with impaired proliferation and survival. The mutant B cells were further characterized by a B-cell receptor (BCR) signaling defect with increased Erk and decreased Akt activation, as well as a defect in BCR-mediated B-cell–activating factor (BAFF) receptor up-regulation and subsequent BAFF receptor signaling in mature resting B cells. Surprisingly, Cdc42 was dispensable for stromal cell–derived factor-1α (SDF-1α)– or B-lymphocyte chemoattractant (BLC)–induced B-cell migration. Finally, loss of Cdc42 from hematopoietic stem cells did not alter common lymphoid progenitor production but severely reduced proB/preB- and immature B-cell populations, indicating that Cdc42 is also involved in B-cell precursor differentiation. These results reveal multifaceted roles of Cdc42 in B-cell development and activation.


Blood ◽  
1997 ◽  
Vol 89 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Shunichi Takeda ◽  
Takeyuki Shimizu ◽  
Hans-Reimer Rodewald

Abstract The receptor-type tyrosine kinase, c-kit is expressed in hematopoietic stem cells (HSC), myeloid, and lymphoid precursors. In c-kit ligand-deficient mice, absolute numbers of HSC are mildly reduced suggesting that c-kit is not essential for HSC development. However, c-kit− HSC cannot form spleen colonies or reconstitute hematopoietic functions in lethally irradiated recipient mice. Based on in in vitro experiments, a critical role of c-kit in B-cell development was suggested. Here we have investigated the B-cell development of c-kitnull mutant (W/W ) mice in vivo. Furthermore, day 13 fetal liver cells from wild type or W/W mice were transferred into immunodeficient RAG-2−/− mice. Surprisingly, transferred c-kit− cells gave rise to all stages of immature B cells in the bone marrow and subsequently to mature conventional B2, as well as B1, type B cells in the recipients to the same extent as transferred wild type cells. Hence, in contrast to important roles of c-kit in the expansion of HSC and the generation of erythroid and myeloid lineages and T-cell precursors, c-kit− HSC can colonize the recipient bone marrow and differentiate into B cells in the absence of c-kit.


Blood ◽  
2012 ◽  
Vol 119 (17) ◽  
pp. 3966-3974 ◽  
Author(s):  
Lisa S. Westerberg ◽  
Carin Dahlberg ◽  
Marisa Baptista ◽  
Christopher J. Moran ◽  
Cynthia Detre ◽  
...  

Abstract The Wiskott-Aldrich syndrome protein (WASP) is a key cytoskeletal regulator of hematopoietic cells. Although WASP-knockout (WKO) mice have aberrant B-cell cytoskeletal responses, B-cell development is relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homolog of WASP, may serve some redundant functions with WASP in B cells. In the present study, we generated mice lacking WASP and N-WASP in B cells (conditional double knockout [cDKO] B cells) and show that cDKO mice had decreased numbers of follicular and marginal zone B cells in the spleen. Receptor-induced activation of cDKO B cells led to normal proliferation but a marked reduction of spreading compared with wild-type and WKO B cells. Whereas WKO B cells showed decreased migration in vitro and homing in vivo compared with wild-type cells, cDKO B cells showed an even more pronounced decrease in the migratory response in vivo. After injection of 2,4,6-trinitrophenol (TNP)–Ficoll, cDKO B cells had reduced antigen uptake in the splenic marginal zone. Despite high basal serum IgM, cDKO mice mounted a reduced immune response to the T cell–independent antigen TNP-Ficoll and to the T cell–dependent antigen TNP–keyhole limpet hemocyanin. Our results reveal that the combined activity of WASP and N-WASP is required for peripheral B-cell development and function.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 778-778
Author(s):  
Takahiro Maeda ◽  
Taha Merghoub ◽  
Lin Dong ◽  
Manami Maeda ◽  
Robin Hobbs ◽  
...  

Abstract LRF (Leukaemia/Lymphoma Related Factor, formerly described as Pokemon, FBI-1 and OCZF, encoded by the Zbtb7a gene) is a transcriptional repressor that belongs to the POK (POZ/BTB and Krüppel) protein family. We recently reported that LRF is a proto-oncogene, which is highly expressed in Non-Hodgkin’s Lymphoma tissues (Nature. 433, 278–85). To elucidate its function in fetal and adult lymphopoiesis, we analyzed LRF knockout mice (Zbtb7a−/−) and the conditional knockout mutants (Zbtb7a flox/−Mx-1cre+), respectively. Zbtb7a −/− mice are embryonic lethal due to severe anemia around 16.5 d.p.c. Absolute number of mature B cells was markedly decreased in 15.5 d.p.c Zbtb7a−/− fetal livers (FL), while total number of the earliest immature B cells (Lin-AA4.1+CD19−B220+) was comparable to wild type (WT) littermates. Flow-Sorted Zbtb7a−/− FL Hematopoietic Stem Cells (FL-HSCs) did not give rise to ProB cells in vitro in an OP9 cell culture system. Furthermore, competitive repopulation assay suggested that the defect in B cell development in Zbtb7a−/− FL was cell-autonomous. Conditional inactivation of LRF in adult mice resulted in a significant decrease of B220+ B cells in the peripheral blood (PB). Absolute numbers of both ProB and PreB cells in the BM were drastically reduced in Zbtb7a flox/−Mx-1cre+ mice after pIpC injections, while PreProB cells were rather accumulated. Zbtb7a flox/−Mx-1cre+ PreProB cells did not give rise to ProB cells in vitro in OP9 cell culture. Unexpectedly, Zbtb7a flox/−Mx-1cre+ PreProB cells ectopically expressed T cell genes (e.g. pTCRα, Notch1, Notch3, Hes1, Gata3, TCF1), while they lacked B-cell specific gene expression (e.g. E2A, Ebf1, Pax5, Rag, VpreB1). In agreement with this finding, Zbtb7a flox/−Mx-1cre+ PreProB cells efficiently differentiated into DP-T cells upon 6 days of culture on OP9-DL1 cells, which overexpress Notch1 ligand Delta-like1. We did not observe a gross defect in the T cell compartment in PB and Thymus of Zbtb7a flox/−Mx-1cre+ mice. However, we observed an accumulation of CD4/8 double positive (DP) T cells in their BM. DP-T cells consisted of nearly 30% of the BM mononuclear cells (MNCs) in Zbtb7a flox/−Mx-1cre+ mice. Since the phenotype of LRF conditional knockout mice is reminiscent of that of ICN1 (Intracellular domain of Notch1) overexpression in the mouse BM, we hypothesized that LRF could oppose Notch1 signaling pathway at the early lymphoid progenitor stage. We found that pTCRα, a Notch1 target gene, is highly up-regulated in Zbtb7a flox/−Mx-1cre+ CLPs and that LRF transcriptionally represses mouse pTCRα promoter activity. Our finding strongly indicates that LRF loss at the early lymphoid progenitor stage causes aberrant de-repression of T-cell specific genes, which results in the block of B cell development and generation of T cells in the BM. We therefore propose that LRF is essential in instructing the early lymphoid progenitors into B cell lineage by repressing T cell-instructive signal produced by Notch.


1983 ◽  
Vol 157 (4) ◽  
pp. 1273-1286 ◽  
Author(s):  
H Auchincloss ◽  
J A Bluestone ◽  
D H Sachs

Mice have been treated in vivo with xenogeneic antiidiotypes prepared against a murine monoclonal anti-H-2Kk antibody, 11-4.1. B cell immune responses have been found to be altered by such treatment as evidenced by a modification in the idiotypic repertoire of the humoral response to H-2 antigens. Transfer of purified T cells into nude mice before anti-idiotype treatment showed that T cells are involved in the induction of idiotope-bearing antibodies by xenogeneic antiidiotype. Studies using bone marrow chimeras indicate that the environment in which either T or B cells mature does not appear to alter VH region genetic control of induction of antiidiotype-induced molecules. By adoptive transfer studies, T cells from antiidiotype-treated mice were found capable of modifying the idiotypic repertoire of B cells subsequently exposed to antigen even when the T cells were obtained from antiidiotype-primed mice of inappropriate allotype. Although it still must be determined whether idiotypic or antiidiotypic T cells are involved in such B cell idiotype regulation, these results indicate that some T cell functions are altered by xenogeneic antiidiotypes prepared against B cell products and suggest that T cell immunity to major histocompatibility complex antigens may also be affected by such reagents.


2005 ◽  
Vol 25 (11) ◽  
pp. 4455-4465 ◽  
Author(s):  
Ying Wang ◽  
Ondrej Horvath ◽  
Andrea Hamm-Baarke ◽  
Mireille Richelme ◽  
Claude Grégoire ◽  
...  

ABSTRACT NTAL (non-T-cell activation linker, also called LAB) and LAT (linker for activation of T cells) are evolutionarily related transmembrane adaptor proteins that are phosphorylated upon immunoreceptor engagement. Using quantitative reverse transcription-PCR, both NTAL and LAT were found to be expressed in B cells. However, LAT expression was limited to early B cells, whereas NTAL expression typified mature B cells. To delineate their roles in B-cell development and function, Ntal-deficient mice were generated and crossed with Lat-deficient mice. B cells developed in Lat −/− Ntal −/− double-deficient mice and in mice lacking either of the two adaptors with the same efficiency as in wild-type mice. Upon B-cell antigen receptor cross-linking, Ntal −/− B cells exhibited slightly increased Ca2+ mobilization and proliferation. In addition, Ntal-deficient mice had increased levels of natural antibodies and slightly increased humoral response to a T-dependent antigen. Normal titers of serum-specific immunoglobulins were produced in response to a T-cell-independent antigen. Although NTAL is also expressed in plasma cells, its absence did not affect the hypergammaglobulinemia E and G1 that developed in mice with a mutation in tyrosine 136 of LAT. Therefore, NTAL does not play a role in B cells symmetric to the role played by LAT in T cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2465-2465
Author(s):  
Wanda P. Blanton ◽  
Fangnian Wang ◽  
Hongsheng Liu ◽  
Paul Romesser ◽  
Douglas Faller ◽  
...  

Abstract Transcriptional control of cellular proliferation and differentiation is critically important in hematopoiesis; specifically, the role of chromatin-dependent regulatory processes in this context is poorly understood. The human BRD2 proto-oncogene encodes a double bromodomain protein that binds to acetylated histone H4 in chromatin and is located within the MHC class II locus, suggesting Brd2 plays a role in immunity. However, BRD2 shares no sequence similarity with other MHC genes, nor is Brd2 involved in antigen processing, but rather it plays a role in mitogenic signal transduction. We have previously found that whole-body knockout of Brd2 is lethal to mice. However, when Brd2 was expressed constitutively in the B cells of transgenic mice, Brd2 binds E2F proteins, histone acetylases and Swi/Snf complexes, and co-activates cyclin A leading to B cell lymphoma and leukemia. Importantly, elevated levels of Brd2 have been reported in primary malignant B cells from human and mouse. We therefore hypothesize that Brd2 multiprotein complexes, working through chromatin modification, are crucial in the control of the cell cycle and in the mitogen responsiveness and proliferation of the B cell compartment. To study the effects of Brd2 in B cell development and proliferation, we performed bone marrow transplants of hematopoietic stem cells in a chimeric mouse model. Hematopoietic stem cells were sorted from CD45.1 donor mice with the characteristic ‘side population’ profile by flow cytometry and transduced with lentivirus containing vectors for Brd2 overexpression, shRNA knockdown, or control vectors. Recipient CD45.2 mice were lethally irradiated and a functional immune system was successfully reconstituted with donor cells and CD45.2 competitor BM cells. Mice were immunophenotyped and functional B cell mitogenic capacity was examined by BrdU incorporation into LPS-stimulated B cells. We found that in the spleen, Brd2 expression dramatically expands the CD45.1 (but not CD45.2) B cell compartment at the expense of T cells and renders B cells mitogenically hypersensitive. Compared with control, there was an increase in BrdU incorporation at 24 and 48 hours (29.8% v. 43.5% at T=24 h; 56.9% v. 66.7% at T=48 h). Preliminary results also suggest that B cell development was skewed in the bone marrow and periphery towards B1a phenotype. Moreover, downregulation of Brd2 via shRNA blocked cyclin A transcription and completely arrested B cell development and proliferation. Taken together, these data suggest that Brd2, through epigenetic regulation of the cell cycle, plays an important role in B-lymphopoiesis, proliferation, and stimulation.


Sign in / Sign up

Export Citation Format

Share Document