scholarly journals Priming CD8+ T cells with dendritic cells matured using TLR4 and TLR7/8 ligands together enhances generation of CD8+ T cells retaining CD28

Blood ◽  
2011 ◽  
Vol 117 (24) ◽  
pp. 6542-6551 ◽  
Author(s):  
Jeffrey S. Pufnock ◽  
Melinda Cigal ◽  
Lisa S. Rolczynski ◽  
Erica Andersen-Nissen ◽  
Mathias Wolfl ◽  
...  

Abstract TLRs expressed on dendritic cells (DCs) differentially activate DCs when activated alone or in combination, inducing distinct cytokines and costimulatory molecules that influence T-cell responses. Defining the requirements of DCs to program T cells during priming to become memory rather than effector cells could enhance vaccine development. We used an in vitro system to assess the influence of DC maturation signals on priming naive human CD8+ T cells. Maturation of DCs with lipopolysaccharide (LPS; TLR4) concurrently with R848 (TLR7/8) induced a heterogeneous population of DCs that produced high levels of IL12 p70. Compared with DCs matured with LPS or R848 alone, the DC population matured with both adjuvants primed CD8+ T-cell responses containing an increased proportion of antigen-specific T cells retaining CD28 expression. Priming with a homogenous subpopulation of LPS/R848–matured DCs that were CD83Hi/CD80+/CD86+ reduced this CD28+ subpopulation and induced T cells with an effector cytokine signature, whereas priming with the less mature subpopulations of DCs resulted in minimal T-cell expansion. These results suggest that TLR4 and TLR7/8 signals together induce DCs with fully mature and less mature phenotypes that are both required to more efficiently prime CD8+ T cells with qualities associated with memory T cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 377-377 ◽  
Author(s):  
Daniel J Hui ◽  
Gary C Pien ◽  
Etiena Basner-Tschakarjan ◽  
Federico Mingozzi ◽  
Jonathan D Finn ◽  
...  

Abstract Abstract 377 Hemophilia B represents a promising model for the development of adeno-associated viral (AAV) vectors-based gene therapeutics. In the first clinical trial for AAV serotype 2 mediated gene transfer of Factor IX (F.IX) to the liver of severe hemophilia B subjects, transgene expression was short-lived with a gradual decline of F.IX levels. The loss of transgene expression was accompanied by a transient transaminitis, which we hypothesized to be the result of the reactivation of a pool of capsid-specific memory CD8+ T cells originated from a previous exposure to wild-type AAV. These results were unanticipated since previous work in small and large animal models showed that AAV administration is uneventful, allowing prolonged expression of F.IX transgene at therapeutic levels. We developed an in vitro cytotoxicity assay using a human hepatocyte cell line expressing HLA-B*0702, a common MHC class I allele for which the AAV capsid immunodominant epitope VPQYGYLTL was identified. Using this model, we demonstrated that HLA-matched AAV-specific effector CD8+ T cells were able to lyse target hepatocytes transduced with AAV-2. We now use this in vitro model of CTL killing of AAV-transduced hepatocytes to demonstrate the efficacy of a novel strategy to circumvent undesirable immune response through the engagement of regulatory T cells. A recently characterized MHC Class II-restricted T cell epitope (Tregitope) in the Fc fragment of IgG has been shown to induce regulatory T cells in vitro and in vivo (Blood, 2008; 112: 3303-3311). AAV-specific HLA-B*0702 effector cells expanded in the presence of a human Tregitope peptide resulted in 79% to 89% inhibition of cytotoxic activity against peptide-pulsed and AAV-transduced target cells, respectively. These results were confirmed using PBMCs from 5 different donors. A similar degree of inhibition of CTL activity was observed for the HLA allele A*0101, which binds to the AAV-derived epitope SADNNNSEY; co-culture of effector cells with the Tregitope inhibited CTL-mediated killing by 60%. Interestingly, the same Tregitope efficiently mediated suppression of CTL activity in subjects carrying different HLA alleles, indicating a high level of promiscuity of Tregitope binding. Staining for the regulatory T cell markers CD4, CD25, and FoxP3 supported the hypothesis that Tregitopes suppress T cell responses by expanding regulatory T cells; 62.2% of the CD4+ population stained positive for CD25 and FoxP3 in PBMCs expanded against AAV epitopes in the presence of Tregitope, compared with PBMCs expanded against an AAV epitope alone (3.63%), or against an AAV epitope and an irrelevant control peptide (1.94%). Polyfunctional analysis for markers for T cell activation showed that CD8+ T cells incubated in the presence of Tregitope had an approximately 5-fold decrease in production of IL-2 and IFN-γand a 2-fold reduction in TNF-α production, indicating levels of activation close to naïve CD8+ T cells. We further characterized the mechanism of action of Tregitopes by showing that Tregitopes are required at the time of CD8+ T cell priming, as CTL activity of AAV-expanded CD8+ T cells against transduced hepatocytes was not inhibited by the CD4+ T cell fraction of PBMC expanded separately in vitro with Tregitopes only. We conclude that the use of Tregitopes represents a promising strategy for antigen-specific, Treg-mediated modulation of capsid-specific T cell responses. Disclosures: Martin: EpiVax: Employment. De Groot:EpiVax, Inc.: Employment, Equity Ownership.


Author(s):  
Maud Wilhelm ◽  
Amandeep Kaur ◽  
Marion Wernli ◽  
Hans H Hirsch

Abstract Background BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. Methods Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. Results BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1–) and cytotoxic. Conclusions Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 162-162
Author(s):  
Emmanuel S. Antonarakis ◽  
David I. Quinn ◽  
Adam S. Kibel ◽  
Daniel Peter Petrylak ◽  
Tuyen Vu ◽  
...  

162 Background: Sip-T is an FDA-approved immunotherapy for patients (pts) with asymptomatic or minimally symptomatic metastatic CRPC. Sip-T is manufactured from autologous peripheral blood mononuclear cells cultured with the immunogen PA2024, a fusion antigen of prostatic acid phosphatase (PAP) conjugated to granulocyte macrophage colony-stimulating factor. After sip-T, antibody and T cell responses to PA2024 and/or PAP correlate with improved survival. To further elucidate the mechanism of sip-T–induced immune responses, we evaluated the proliferative and lytic ability of PA2024- and PAP-specific CD8+ T cells. Methods: Mononuclear blood cells were labeled with the membrane dye carboxyfluorescein succinimidyl ester (CFSE) and cultured with PA2024 or PAP. In vitro proliferative and lytic CD8+ (cytotoxic T lymphocyte [CTL]) T cell responses to these antigens were evaluated by flow cytometry. For proliferation, progressive dilution of CFSE was measured. For CTL activity, the loss of intracellular granzyme B (GzB), indicating exocytosis of this apoptosis-mediating enzyme, was assessed. Samples were from 2 sip-T clinical trials STAND (NCT01431391) and STRIDE (NCT01981122), hormone-sensitive and CRPC pts, respectively. Results: Six wk after sip-T administration, CD8+ PAP- and PA2024-specific responses were observed (n=14 pts assessed). The magnitude of PA2024-specific CD8+ proliferative responses was greater than that for PAP-specific responses. CD8+ T cells from a subset of pts who exhibited PA2024- and/or PAP-specific proliferative responses were assessed for lytic ability. After in vitro antigen stimulation, CTL activity in all evaluated samples (n=14, PA2024; n=13, PAP) was demonstrated by a significant decrease (p<0.05) in intracellular GzB relative to a no-antigen control. Conclusions: Sip-T induced CD8+ CTL proliferation against the target antigens PAP and PA2024. Moreover, antigen-specific CTL activity provides the first direct evidence that sip-T can induce tumor cell lysis. These antigen-specific CD8+ lytic abilities were observed within 6 wk following sip-T, suggesting rapidly generated immune responses. Clinical trial information: NCT01431391; NCT01981122.


2010 ◽  
Vol 84 (11) ◽  
pp. 5540-5549 ◽  
Author(s):  
B. Julg ◽  
K. L. Williams ◽  
S. Reddy ◽  
K. Bishop ◽  
Y. Qi ◽  
...  

ABSTRACT Effective HIV-specific T-cell immunity requires the ability to inhibit virus replication in the infected host, but the functional characteristics of cells able to mediate this effect are not well defined. Since Gag-specific CD8 T cells have repeatedly been associated with lower viremia, we examined the influence of Gag specificity on the ability of unstimulated CD8 T cells from chronically infected persons to inhibit virus replication in autologous CD4 T cells. Persons with broad (≥6; n = 13) or narrow (≤1; n = 13) Gag-specific responses, as assessed by gamma interferon enzyme-linked immunospot assay, were selected from 288 highly active antiretroviral therapy (HAART)-naive HIV-1 clade C-infected South Africans, matching groups for total magnitude of HIV-specific CD8 T-cell responses and CD4 T-cell counts. CD8 T cells from high Gag responders suppressed in vitro replication of a heterologous HIV strain in autologous CD4 cells more potently than did those from low Gag responders (P < 0.003) and were associated with lower viral loads in vivo (P < 0.002). As previously shown in subjects with low viremia, CD8 T cells from high Gag responders exhibited a more polyfunctional cytokine profile and a stronger ability to proliferate in response to HIV stimulation than did low Gag responders, which mainly exhibited monofunctional CD8 T-cell responses. Furthermore, increased polyfunctionality was significantly correlated with greater inhibition of viral replication in vitro. These data indicate that enhanced suppression of HIV replication is associated with broader targeting of Gag. We conclude that it is not the overall magnitude but rather the breadth, magnitude, and functional capacity of CD8 T-cell responses to certain conserved proteins, like Gag, which predict effective antiviral HIV-specific CD8 T-cell function.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1354-1354
Author(s):  
Annkristin Heine ◽  
Tobias Holderried ◽  
Frank Grünebach ◽  
Silke Appel ◽  
Markus M. Weck ◽  
...  

Abstract Transfection of dendritic cells (DC) with in vitro transcribed RNA was shown to be a highly efficient method to generate antigen specific T cells, probably due to the induction of a polyclonal T cell response directed against multiple antigens presented on different HLA allels. However, the experimental evidence of this assumption remains to be demonstrated. To accomplish this, we used monocyte derived DC that were electroporated with RNA coding for the CMV pp65 antigen. The induction and expansion of antigen specific CD8+ and CD4+ T cells was assessed using a pannel of peptides derived from this antigen and presented on HLA-A2, -A1, -A11, -A24, -B35 and -B7 in IFN-g ELISPOT, 51Cr-release and proliferation assays. Autologous DC generated from CMV positive healthy donors were pulsed with peptides or transfected with pp65 RNA and utilized as stimulators. Autologous purified CD8+ and CD4+ lymphocytes were used as effector cells. By applying this approach we found that transfection of DC with pp65 RNA induces an expansion of polyclonal CD8+ mediated T cell responses that recognized peptide antigens presented on different HLA molecules. These in vitro generated cytotoxic T cells were able to efficiently lyse DC pulsed with pp65 derived peptides or transfected with the cognate RNA in an antigen specific manner after several in vitro restimulations. Furthermore, this experimental approach allowed the identification of the immunodominace of T cell epitopes presented upon RNA transfection. The HLA-2 directed responses were more pronounced as compared to the HLA-A1, -A11, -A24 or -B35 allels. In contrast, in 7 out of 7 HLA-A2 and HLA-B7 positive donors B7-peptides elicited a stronger T cell response than the A2-peptide, indicating the immunodominance of HLA-B7 epitopes. Interestingly, transfection of DC with pp65 RNA resulted in the induction of CD4+ antigen specific T cells that produced IFN-g and proliferated upon stimulation with transfected DC. In the next set of experiments we analyzed the possible induction of CMV specific T cells that recognize epitopes deduced from different antigens. Co-transfection of DC with a mixture of RNAs coding for the CMV pp65 and IE1 antigens elicited polyclonal T lymphocytes specific for peptides derived from both antigens. More importantly, polyclonal cytotoxic T cells could be elicited in peripheral blood of 2 out of 3 CMV negative donors demonstrating the efficiency of this approach. Our results demonstrate that DC transfected with RNA can elicit polyclonal T cell responses and have implications for the development of immunotherapeutic strategies to target viral or tumor associated antigens.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1261-1261
Author(s):  
Zwi N. Berneman ◽  
Ellen R. Van Gulck ◽  
Leo Heyndrickx ◽  
Peter Ponsaerts ◽  
Viggo F.I. Van Tendeloo ◽  
...  

Abstract Human immunodeficiency virus type 1 (HIV-1) infection is characterized by dysfunction of HIV-1-specific T-lymphocytes. In order to suppress the virus and delay evolution to AIDS, antigen-loaded antigen-presenting cells, including dendritic cells (DC) might be useful to boost and broaden HIV-1-specific T-cell responses. Monocyte-derived DC from 15 untreated (“naive”) and 15 highly active anti-retroviral therapy (HAART)-treated HIV-1-infected patients were electroporated with codon-optimized (“humanized”) mRNA encoding consensus HxB-2 (hHxB-2) Gag protein. These DC were co-cultured for 1 week with autologous peripheral blood leucocytes (PBL). Potential expansion of specific T-cells was measured by comparing ELISPOT responses of PBL before and after co-culture, using a pool of overlapping peptides, spanning the HxB-2 Gag. Expansion of specific PBL after co-culture was noted for T cells producing interferon (IFN)-gamma, interleukin (IL)-2 and perforin (Wilcoxon signed rank test p&lt;0.05, except for IL-2 in naive patients). From all HIV-1-seropositive persons tested, 12 HAART-treated and 12 naive patients match in absolute number of CD4+ T-cells. A comparison of the increase of the response between day 0 and after 1 week of stimulation between those two groups showed that the response was higher in HAART-treated subjects for IFN-gamma and IL-2 but not for perforin in comparison to untreated subjects. Examining purified CD4+ and CD8+ T-cells after co-culture revealed that HxB-2 Gag peptides induced IFN-gamma in both subsets, that IL-2 was only secreted by CD4+ T-cells and that perforin was dominantly secreted by CD8+ T-cells. Remarkably, the perforin response in the treatment-naive persons was negatively correlated with the peripheral blood absolute CD4+ and CD8+ T-cell count (respectively R=0.618, p=0.014; and R=0.529, p=0.043). Furthermore, the nadir absolute CD4+ T-cell count in HAART-treated subjects was positively correlated with the IL-2 response (R=0.521, p=0.046) and negatively correlated with the perforin response (R=0.588, p=0.021). In conclusion, DC from HAART-treated and therapy-naive subjects, electroporated with hHxB-2 gag mRNA have the capacity to induce secondary T-cell responses. In an earlier study (Van Gulck ER et al. Blood2006;107:1818–1827), we already demonstrated ex vivo that CD4+ and CD8+ T-cells from non-treated HIV-1-infected subjects can be directly triggered by DC electroporated with autologous proviral-derived gag mRNA. Taken together, our results open the perspective for a DC immunotherapy for HIV disease.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 373-373
Author(s):  
Else Marit Inderberg Suso ◽  
Anne-Marie Rasmussen ◽  
Steinar Aamdal ◽  
Svein Dueland ◽  
Gustav Gaudernack ◽  
...  

Abstract Abstract 373 Two cancer patients were vaccinated with dendritic cells (DC) loaded with telomerase (hTERT) mRNA to investigate the safety, tolerability and immunological response to vaccination prior to the start of a new phase I/II clinical trial. Following written informed consent one primary lung adenocarcinoma with metastasis and one patient with a relapsed pancreatic ductal type of adenocarcinoma, were treated with autologus monocyte-derived DC transfected with mRNA encoding hTERT. The patients first received four weekly injections administered intradermally followed by monthly booster injections. Peripheral blood mononuclear cells (PBMC) at each vaccination time point were tested in vitro with transfected DC and a panel of 24 overlapping hTERT peptides. In addition, hTERT-specific CD8+ T cells were monitored by pentamer staining. The treatment was well tolerated with minor side effects. Immune responses against telomerase-transfected DC and some of the overlapping hTERT peptides were detected in both patients. We also detected hTERT-specific CD8+ T cells in both patients by pentamer staining in post-vaccination samples. The lung cancer patients obtained a stable disease that lasted 18 months while the patient with pancreas cancer who started the DC vaccination in July 2007 following palliative chemotherapy, still is in stable disease by continuously boost vaccination. T-cell responses against telomerase epitopes have also been identified in both non-vaccinated cancer patients and cancer patients previously vaccinated with telomerase peptide. Since patients with these findings often show extraordinary clinical courses of their disease we hypothesize that it exists a high degree of immunogenicity and HLA promiscuity for some telomerase epitopes. In this study we have shown that vaccination with hTERT-mRNA transfected DC is safe and able to induce robust immune responses to several telomerase T-cell epitopes both in CD4+ and CD8+ T cells. This opens up the possibility for a broad clinical application of mRNA hTERT DC vaccines. Furthermore, responding T cells identified in these patients are strong candidates for T-cell receptor cloning and the receptors identified can thereafter be transferred into T cells creating the next generation of immuno-gene therapy with retargeted T cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 216-223 ◽  
Author(s):  
Elodie Segura ◽  
Carole Nicco ◽  
Bérangère Lombard ◽  
Philippe Véron ◽  
Graça Raposo ◽  
...  

Exosomes are secreted vesicles formed in late endocytic compartments. Immature dendritic cells (DCs) secrete exosomes, which transfer functional major histocompatibility complex (MHC)–peptide complexes to other DCs. Since immature and mature DCs induce different functional T-cell responses (ie, tolerance versus priming), we asked whether DC maturation also influenced the priming abilities of their exosomes. We show that exosomes secreted by lipopolysaccharide (LPS)–treated mature DCs are 50- to 100-fold more potent to induce antigen-specific T-cell activation in vitro than exosomes from immature DCs. In vitro, exosomes from mature DCs transfer to B lymphocytes the ability to prime naive T cells. In vivo, only mature exosomes trigger effector T-cell responses, leading to fast skin graft rejection. Proteomic and biochemical analyses revealed that mature exosomes are enriched in MHC class II, B7.2, intercellular adhesion molecule 1 (ICAM-1), and bear little milk-fat globule–epidermal growth factor–factor VIII (MFG-E8) as compared with immature exosomes. Functional analysis using DC-derived exosomes from knock-out mice showed that MHC class II and ICAM-1 are required for mature exosomes to prime naive T cells, whereas B7.2 and MFG-E8 are dispensable. Therefore, changes in protein composition and priming abilities of exosomes reflect the maturation signals received by DCs.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A648-A648
Author(s):  
Kelly-Anne Masterman ◽  
Oscar Haigh ◽  
Kirsteen Tullett ◽  
Ingrid Leal-Rojas ◽  
Carina Walpole ◽  
...  

BackgroundDendritic cells (DC) are crucial for the efficacy of cancer vaccines, but current vaccines do not harness the key cDC1 subtype required for effective CD8+ T cell mediated tumor immune responses. Vaccine immunogenicity could be enhanced by specific delivery of immunogenic tumor antigens to CD141+ DC, the human cDC1 equivalent. CD141+ DC exclusively express the C-type-lectin-like receptor CLEC9A, which is important for the regulation of CD8+ T cell responses. This study developed a new vaccine that harnesses a human anti-CLEC9A antibody to specifically deliver the immunogenic tumor antigen, NY-ESO-1 to human CD141+ DC. The ability of the CLEC9A-NY-ESO-1 antibody to activate NY-ESO-1 specific naïve and memory CD8+ T cells was examined and compared to a vaccine comprised of a human DEC-205-NY-ESO-1 antibody that targets all human DC.MethodsHuman anti-CLEC9A, anti-DEC-205 and isotype control IgG4 antibodies were genetically fused to NY-ESO-1 polypeptide. Cross-presentation to NY-ESO-1- epitope specific CD8+ T cells and reactivity of T cell responses in melanoma patients was assessed by IFNγ production following incubation of CD141+ DC and patient peripheral blood mononuclear cells with targeting antibodies. Humanized mice containing human DC subsets and a repertoire of naïve NY-ESO-1-specific CD8+ T cells were used to investigate naïve T cell priming. T cell effector function was measured by expression of IFNγ, MIP-1β, TNF and CD107a and by lysis of target tumor cells.ResultsCLEC9A-NY-ESO-1 Ab were effective at mediating delivery and cross-presentation of multiple NY-ESO-1 epitopes by CD141+ DC for activation of NY-ESO-1-specific CD8+ T cells. When benchmarked to NY-ESO-1 conjugated to an untargeted control antibody or to anti-human DEC-205, CLEC9A-NY-ESO-1 was superior at ex vivo reactivation of NY-ESO-1-specific T cell responses in melanoma patients. Moreover, CLEC9A-NY-ESO-1 induced priming of naïve NY-ESO-1-specific CD8+ T cells with polyclonal effector function and potent tumor killing capacity in vitro.ConclusionsThese data advocate human CLEC9A-NY-ESO-1 antibody as an attractive strategy for specific targeting of CD141+ DC to enhance tumour immunogenicity in NY-ESO-1-expressing malignancies.Ethics ApprovalWritten informed consent was obtained for human sample acquisition in line with standards established by the Declaration of Helsinki. Study approval was granted by the Mater Human Research Ethics Committee (HREC13/MHS/83 and HREC13/MHS/86) and The U.S. Army Medical Research and Materiel Command (USAMRMC) Office of Research Protections, Human Research Protection Office (HRPO; A-18738.1, A-18738.2, A-18738.3). All animal experiments were approved by the University of Queensland Animal Ethics Committee and conducted in accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes in addition to the laws of the United States and regulations of the Department of Agriculture.


Sign in / Sign up

Export Citation Format

Share Document