Pressing the right buttons: signaling in lymphangiogenesis

Blood ◽  
2014 ◽  
Vol 123 (17) ◽  
pp. 2614-2624 ◽  
Author(s):  
Sanja Coso ◽  
Esther Bovay ◽  
Tatiana V. Petrova

Abstract Lymphatic vasculature is increasingly recognized as an important factor both in the regulation of normal tissue homeostasis and immune response and in many diseases, such as inflammation, cancer, obesity, and hypertension. In the last few years, in addition to the central role of vascular endothelial growth factor (VEGF)-C/VEGF receptor-3 signaling in lymphangiogenesis, significant new insights were obtained about Notch, transforming growth factor β/bone morphogenetic protein, Ras, mitogen-activated protein kinase, phosphatidylinositol 3 kinase, and Ca2+/calcineurin signaling pathways in the control of growth and remodeling of lymphatic vessels. An emerging picture of lymphangiogenic signaling is complex and in many ways distinct from the regulation of angiogenesis. This complexity provides new challenges, but also new opportunities for selective therapeutic targeting of lymphatic vasculature.

2007 ◽  
Vol 196 (2) ◽  
pp. 425-433 ◽  
Author(s):  
Jin-Wen Xu ◽  
Naomi Yasui ◽  
Katsumi Ikeda ◽  
Wei-Jun Pan ◽  
June Watanabe ◽  
...  

Isoflavones have attracted much attention due to their association with health benefits; however, comprehensive understanding of the beneficial impacts of isoflavones on uterine biology at the molecular level remains unexplored. In the present study, our data showed that isoflavones aglycones AglyMax, genistein, and equol, but not daidzein, within the range of plasma concentration, displayed bioavailability in regulating the secretion of leukemia inhibitory factor (LIF) and transforming growth factor β (TGF-β) in Ishikawa cells, which was blocked by an estrogen receptor antagonist ICI 182 780, mitogen-activated protein kinase kinase (MEK)1/2 inhibitor PD98059, and p38 mitogen-activated protein kinase inhibitor SB203580. We also found that AglyMax and genistein increased in cyclic AMP release and the expression of glycodelin protein in Ishikawa cells assayed using western blot and immunochemical staining. The MEK1/2 inhibitor PD98059 and the protein kinase A inhibitor H89, but not SB203580, attenuated this glycoprotein expression. Moreover, isoflavone aglycones AglyMax stimulated LIF, and TGF-β secretion, and glycodelin expression in separate primary endometrial epithelial cells in the follicular phase or luteal phase from healthy subject donors. Overall, our findings suggest that isoflavones may alter the uterine expression of estrogen-responsive genes.


2017 ◽  
Vol 37 (18) ◽  
Author(s):  
Erik Hedrick ◽  
Stephen Safe

ABSTRACT Transforming growth factor β (TGF-β)-induced migration of triple-negative breast cancer (TNBC) cells is dependent on nuclear export of the orphan receptor NR4A1, which plays a role in proteasome-dependent degradation of SMAD7. In this study, we show that TGF-β induces p38α (mitogen-activated protein kinase 14 [MAPK14]), which in turn phosphorylates NR4A1, resulting in nuclear export of the receptor. TGF-β/p38α and NR4A1 also play essential roles in the induction of epithelial-to-mesenchymal transition (EMT) and induction of β-catenin in TNBC cells, and these TGF-β-induced responses and nuclear export of NR4A1 are blocked by NR4A1 antagonists, the p38 inhibitor SB202190, and kinase-dead [p38(KD)] and dominant-negative [p38(DN)] forms of p38α. Inhibition of NR4A1 nuclear export results in nuclear export of TGF-β-induced β-catenin, which then undergoes proteasome-dependent degradation. TGF-β-induced β-catenin also regulates NR4A1 expression through formation of the β-catenin–TCF-3/TCF-4/LEF-1 complex on the NR4A1 promoter. Thus, TGF-β-induced nuclear export of NR4A1 in TNBC cells plays an essential role in cell migration, SMAD7 degradation, EMT, and induction of β-catenin, and all of these pathways are inhibited by bis-indole-derived NR4A1 antagonists that inhibit nuclear export of the receptor and thereby block TGF-β-induced migration and EMT.


Sign in / Sign up

Export Citation Format

Share Document