scholarly journals Transforming Growth Factor-β-Smad Signaling Pathway Negatively Regulates NontypeableHaemophilus influenzae-inducedMUC5ACMucin Transcription via Mitogen-activated Protein Kinase (MAPK) Phosphatase-1-dependent Inhibition of p38 MAPK

2003 ◽  
Vol 278 (30) ◽  
pp. 27811-27819 ◽  
Author(s):  
Hirofumi Jono ◽  
Haidong Xu ◽  
Hirofumi Kai ◽  
David J. Lim ◽  
Young S. Kim ◽  
...  
2007 ◽  
Vol 196 (2) ◽  
pp. 425-433 ◽  
Author(s):  
Jin-Wen Xu ◽  
Naomi Yasui ◽  
Katsumi Ikeda ◽  
Wei-Jun Pan ◽  
June Watanabe ◽  
...  

Isoflavones have attracted much attention due to their association with health benefits; however, comprehensive understanding of the beneficial impacts of isoflavones on uterine biology at the molecular level remains unexplored. In the present study, our data showed that isoflavones aglycones AglyMax, genistein, and equol, but not daidzein, within the range of plasma concentration, displayed bioavailability in regulating the secretion of leukemia inhibitory factor (LIF) and transforming growth factor β (TGF-β) in Ishikawa cells, which was blocked by an estrogen receptor antagonist ICI 182 780, mitogen-activated protein kinase kinase (MEK)1/2 inhibitor PD98059, and p38 mitogen-activated protein kinase inhibitor SB203580. We also found that AglyMax and genistein increased in cyclic AMP release and the expression of glycodelin protein in Ishikawa cells assayed using western blot and immunochemical staining. The MEK1/2 inhibitor PD98059 and the protein kinase A inhibitor H89, but not SB203580, attenuated this glycoprotein expression. Moreover, isoflavone aglycones AglyMax stimulated LIF, and TGF-β secretion, and glycodelin expression in separate primary endometrial epithelial cells in the follicular phase or luteal phase from healthy subject donors. Overall, our findings suggest that isoflavones may alter the uterine expression of estrogen-responsive genes.


Sign in / Sign up

Export Citation Format

Share Document