scholarly journals Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia

Blood ◽  
2017 ◽  
Vol 129 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Sarah K. Tasian ◽  
David T. Teachey ◽  
Yong Li ◽  
Feng Shen ◽  
Richard C. Harvey ◽  
...  

Key Points PI3K/mTOR inhibition potently inhibited leukemia proliferation and signal transduction in vivo in human Ph-like ALL xenograft models. Combined PI3K/mTOR and JAK or ABL inhibition was superior to monotherapy in CRLF2/JAK-mutant and ABL/PDGFR-mutant Ph-like ALL models.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2672-2672 ◽  
Author(s):  
Sarah K. Tasian ◽  
Yong Li ◽  
Theresa Ryan ◽  
Tiffaney Vincent ◽  
David T. Teachey ◽  
...  

Abstract The Philadelphia chromosome (Ph)-like subtype of B-precursor acute lymphoblastic leukemia (ALL) comprises approximately 15% of high-risk ALL, has a kinase-activated gene expression profile similar to that of BCR-ABL1-rearranged ALL, and is associated with a variety of mutations and gene fusions known or predicted to activate oncogenic signal transduction. Children and adults with Ph-like ALL have a very high risk of relapse and poor survival when treated with conventional chemotherapy. Others and we have previously observed constitutive activation of cytokine receptor signaling in Ph-like ALL, particularly of the JAK/STAT and PI3K/Akt/mTOR pathways (Tasian et al., Blood 2012). Preclinical and early clinical studies of JAK inhibition in childhood ALL are in progress. However, the functional role of aberrant PI3K pathway signaling has not been previously investigated in Ph-like ALL. The clinical efficacy of the mTOR inhibitor rapamycin and its analogues has proven suboptimal in various solid and hematologic malignancies, at least in part due to upregulation of Akt signaling, a known sequela of signal transduction inhibitor (STI) monotherapy and a common resistance mechanism. We hypothesized that newer-generation STIs that target multiple PI3K pathway signaling proteins or that selectively inhibit PI3K isoforms may result in superior inhibition of leukemia proliferation and minimize upregulation of alternate signaling pathways. We used patient-derived xenotransplantation models to determine the effects of PI3K pathway STIs upon NOD-SCID-γ-null (NSG) mice well-engrafted with de novo (n = 3) or relapsed (n = 1) childhood Ph-like ALL specimens with JAK2 mutations and/or CRLF2 alterations (Maude et al., Blood 2012). Specifically, we tested the PI3Kα inhibitor BYL719 (30 mg/kg/day), the PI3Kδ inhibitor CAL101 (idelalisib; 30 mg/kg/day), the PI3K/mTOR inhibitor PKI587 (10 mg/kg/day), and the TORC1/TORC2 inhibitor AZD2014 (20 mg/kg/day) to identify the most efficacious PI3K pathway inhibitor(s). Initial pharmacodynamic studies demonstrated that mice treated with each of the four STIs for 72 hours demonstrated potent in vivo inhibition of relevant phosphoproteins in comparison to vehicle-treated mice as measured by phosphoflow cytometric analyses of gated human ALL cells within murine spleens. In particular, both BYL719 and CAL101 treatments resulted in marked inhibition of phosphorylated (p) PI3K, mTOR, S6, and AktS473 via comparison of median fluorescent intensities for STI- vs. vehicle-treated groups with the Mann-Whitney test (p <0.01 for all phosphoproteins). Increased phosphorylation of other measured proteins was not observed, suggesting that proximal inhibition effectively abrogated aberrant PI3K pathway signal transduction with minimal compensatory signaling upregulation. PKI587 treatment robustly inhibited pS6 and p4EBP1 in comparison to vehicle-treated mice (p = 0.001 and 0.003, respectively), but, surprisingly, had minimal effects upon upstream phosphoproteins. AZD2014 inhibited pS6, p4EBP1, and pAktS473, as well as pERK (p < 0.05 for all phosphoproteins). In longer-term therapeutic trials, TORC1/TORC2 inhibition induced stable disease in xenografted mice treated for 4 weeks in comparison to vehicle controls (p < 0.005), while PI3K/mTOR inhibition robustly decreased leukemic burden below pre-treatment levels in blood, bone marrow, and spleen versus vehicle-treated mice (p < 0.001). These studies demonstrate that PI3K pathway inhibition is an effective and biochemically relevant therapeutic strategy for Ph-like ALL. Pharmacodynamic studies and therapeutic trials of the four PI3K pathway STIs are currently ongoing in additional xenograft models of ALLs expressing various defined genetic lesions to delineate the potential therapeutic range of these compounds. Results from these studies will help to improve our understanding of the critical biologic mechanisms involved in Ph-like ALL and to inform our development of clinical trials to test STI-based therapies in patients with these high-risk leukemias. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (2) ◽  
pp. 273-283 ◽  
Author(s):  
Duohui Jing ◽  
Vivek A. Bhadri ◽  
Dominik Beck ◽  
Julie A. I. Thoms ◽  
Nurul A. Yakob ◽  
...  

Key Points The glucocorticoid receptor coordinately regulates the antiapoptotic BCL2 and proapoptotic BIM genes in pediatric ALL cells in vivo. GR binding at a novel intronic region is associated with BIM transcription and dexamethasone sensitivity in pediatric ALL cells in vivo.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3510-3518 ◽  
Author(s):  
Shannon L. Maude ◽  
Sarah K. Tasian ◽  
Tiffaney Vincent ◽  
Junior W. Hall ◽  
Cecilia Sheen ◽  
...  

Abstract CRLF2 rearrangements, JAK1/2 point mutations, and JAK2 fusion genes have been identified in Philadelphia chromosome (Ph)–like acute lymphoblastic leukemia (ALL), a recently described subtype of pediatric high-risk B-precursor ALL (B-ALL) which exhibits a gene expression profile similar to Ph-positive ALL and has a poor prognosis. Hyperactive JAK/STAT and PI3K/mammalian target of rapamycin (mTOR) signaling is common in this high-risk subset. We, therefore, investigated the efficacy of the JAK inhibitor ruxolitinib and the mTOR inhibitor rapamycin in xenograft models of 8 pediatric B-ALL cases with and without CRLF2 and JAK genomic lesions. Ruxolitinib treatment yielded significantly lower peripheral blast counts compared with vehicle (P < .05) in 6 of 8 human leukemia xenografts and lower splenic blast counts (P < .05) in 8 of 8 samples. Enhanced responses to ruxolitinib were observed in samples harboring JAK-activating lesions and higher levels of STAT5 phosphorylation. Rapamycin controlled leukemia burden in all 8 B-ALL samples. Survival analysis of 2 representative B-ALL xenografts demonstrated prolonged survival with rapamycin treatment compared with vehicle (P < .01). These data demonstrate preclinical in vivo efficacy of ruxolitinib and rapamycin in this high-risk B-ALL subtype, for which novel treatments are urgently needed, and highlight the therapeutic potential of targeted kinase inhibition in Ph-like ALL.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36429 ◽  
Author(s):  
Craig T. Wallington-Beddoe ◽  
Anthony S. Don ◽  
John Hewson ◽  
Qiao Qiao ◽  
Rachael A. Papa ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2534-2534 ◽  
Author(s):  
Angela Maria Savino ◽  
Jolanda Sarno ◽  
Luca Trentin ◽  
Margherita Vieri ◽  
Grazia Fazio ◽  
...  

Abstract B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) represents 35% of all cancers in pediatric age group. The cure rate for this disease approaches 90% with current treatment regimens, however only a third of patients with relapse are cured. Therefore, there is an urgent need to focus on subgroups of patients with hallmarks of bad prognosis that could benefit from novel therapeutic approaches. Alterations of Cytokine Receptor-like Factor 2 (CRLF2), a negative prognostic factor in pediatric BCP-ALL, have been identified in up to 10% of patients. However these patients represent half of the high risk Ph-like ALL and of Down Syndrome-associated BCP-ALL. Rearrangements of CRLF2 result in the overexpression of this component of the heterodimeric cytokine receptor for thymic stromal lymphopoietin (TSLP) and is associated with activating mutations of the JAK-STAT pathway. Together these cause hyperactivation of JAK/STAT and PI3K/mTOR signaling. Inhibition of CRLF2/JAK2 signaling has the potential to become a therapeutic targeted intervention for this subgroup of poor prognostic patients. Previous studies have shown that the HDAC inhibitor Givinostat/ITF2357 has potent anti-tumor activity against hematological malignancies, particularly JAK2V617F mutated myeloproliferative neoplasms (MPN) such as polycythemia vera, for which it has already a clinic application and established safety profile. We therefore studied the in vitro and in vivo efficacy of Givinostat in cases with CRLF2 rearrangements. Here we demonstrated that Givinostat inhibited proliferation and induced apoptosis of BCP-ALL CRLF2-rearranged MHH-CALL4 and MUTZ5 cell lines positive for exon 16 JAK2 mutations. Of note, the observed IC50 values for MHH-CALL4 were lower than those for the SET2 cell line positive control bearing JAK2V617F mutation, both for proliferation (IC50: 0.08±0.05µM vs. 0.14±0.03µM) and apoptosis (IC50: 0.17±0.03µM vs. 0.22±0.04µM). We next investigated the effect of Givinostat on blasts from CRLF2 rearranged BCP-ALL patient samples. For this purpose we developed xenograft models of human CRLF2 rearranged ALL to expand cells from patients and to recapitulate human leukemia in recipient mice. ALL blasts isolated from xenografts were co-cultured on OP9 stroma to perform ex vivo assays. Consistent with our findings in cell lines, Givinostat (0.2µM) reduced the % of live cells (Annexin V/Sytox negative) in all xenografts treated with the drug. In particular, after 72 hours, Givinostat was able to kill up to >90% of blast cells in all xenografts in contrast with the vehicle-treated samples which showed 25-60% of blasts still alive after treatment. The induction of cell death in Givinostat treated primografts was confirmed on primary samples from diagnosis using CyTOF which allowed us to observe that CD10+/CRLF2+ blasts were preferentially killed by the drug whereas CD45 high expressing cells (normal residue) remained unaffected by the treatment. Moreover, at low doses (0.2 µM), Givinostat downregulated genes of the JAK/STAT pathway (STAT5A, JAK2, IL7Rα, CRLF2, BCL2L1 and cMYC) and inhibited the basal and ligand induced signaling, reducing the phoshporylation of STAT5 in all tested primografts (mean fold decrease of pSTAT5: 2.4+0.6). Most importantly, to understand if the transcriptional downregulation of CRLF2 resulted in a functional effect, the downmodulation of CRLF2 protein was observed by flow cytometry (mean fold decrease 3.55+1.38). In vivo, Givinostat significantly reduced engraftment of human blasts in xenograft models of CRLF2 positive BCP-ALL (ranging from 1.9 to 34 fold decrease in bone marrow). Furthermore, Givinostat augmented the effect of chemotherapy in inhibiting proliferation and inducing apoptosis in CRLF2 rearranged cell lines and in primografts, in vitro. After 72 hours, the combined treatment reached 4.6-8.8 fold lower % of remaining viable blasts than chemotherapy alone (6.3-35.3% viable cells in chemotherapy-treated samples vs 1.4-4.3% of combination), 2.5-8.5 fold lower than Givinostat alone (4.3-36.4% vs 1.4-4.3%) and 2.4-13 fold lower than Methyl-prednisolone (5.2-39.1 vs 1-16.3%). In conclusion, Givinostat may represent a novel and effective tool, in combination with current chemotherapy, to treat this difficult to handle subset of ALL and these data strongly argue for the translation of Givinostat in combination with conventional therapy into human trials. Disclosures Davis: Fluidigm, Inc: Honoraria. Nolan:Fluidigm, Inc: Equity Ownership.


Blood ◽  
2015 ◽  
Vol 125 (11) ◽  
pp. 1759-1767 ◽  
Author(s):  
Shannon L. Maude ◽  
Sibasish Dolai ◽  
Cristina Delgado-Martin ◽  
Tiffaney Vincent ◽  
Alissa Robbins ◽  
...  

Key Points ETP-ALL, a high-risk subtype of T-ALL, is characterized by aberrant activation of the JAK/STAT signaling pathway. The JAK1/2 inhibitor ruxolitinib demonstrates robust activity in patient-derived xenograft models of ETP-ALL.


Blood ◽  
2015 ◽  
Vol 125 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Joni Van der Meulen ◽  
Viraj Sanghvi ◽  
Konstantinos Mavrakis ◽  
Kaat Durinck ◽  
Fang Fang ◽  
...  

Key Points The H3K27me3 demethylase UTX is recurrently mutated in male T-ALL and escapes X-inactivation in female T-ALL blasts and normal T cells. The loss of Utx contributes to T-ALL formation in vivo and UTX inactivation confers sensitivity to H3K27me3 inhibition.


Blood ◽  
2017 ◽  
Vol 130 (18) ◽  
pp. 2018-2026 ◽  
Author(s):  
Maureen C. Ryan ◽  
Maria Corinna Palanca-Wessels ◽  
Brian Schimpf ◽  
Kristine A. Gordon ◽  
Heather Kostner ◽  
...  

Key Points SGN-CD19B is broadly active in vitro against malignant B-cell lines, including double-hit and triple-hit lymphoma cell lines. SGN-CD19B shows significant antitumor activity in vivo in preclinical models of B-NHL and B-cell–derived acute lymphoblastic leukemia.


Blood ◽  
2015 ◽  
Vol 125 (6) ◽  
pp. 967-980 ◽  
Author(s):  
Yuki Aoki ◽  
Takashi Watanabe ◽  
Yoriko Saito ◽  
Yoko Kuroki ◽  
Atsushi Hijikata ◽  
...  

Key Points Using an in vivo model for primary MLL-rearranged infant ALL, we identified phenotypically and functionally distinct LICs and HSCs. In MLL ALL patient samples, molecules differentially expressed between LICs and HSCs including CD9, CD32, and CD24 were identified.


Sign in / Sign up

Export Citation Format

Share Document