scholarly journals Stage-specific roles for Zmiz1 in Notch-dependent steps of early T-cell development

Blood ◽  
2018 ◽  
Vol 132 (12) ◽  
pp. 1279-1292 ◽  
Author(s):  
Qing Wang ◽  
Ran Yan ◽  
Nancy Pinnell ◽  
Anna C. McCarter ◽  
Yeonjoo Oh ◽  
...  

Key Points Notch1 cofactor Zmiz1 induces a subset of Notch target genes and drives pre–T-cell proliferation during normal and stress thymopoiesis. Disrupting the Zmiz1-Notch1 protein-protein interaction impairs Myc induction, pre–T-cell expansion, and leukemic proliferation.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1569-1569
Author(s):  
Kobayashi Michihiro ◽  
Yunpeng Bai ◽  
Momoko Yoshimoto ◽  
Rui Gao ◽  
Chen Sisi ◽  
...  

Abstract The phosphatase of regenerating liver (PRL) family of phosphatases, consisting of PRL1, PRL2, and PRL3, represents an intriguing group of proteins being validated as biomarkers and therapeutic targets in human cancer. We have been investigating the role of PRL2 in normal / malignant hematopoiesis and found that PRL2 is important for HSC self-renewal (Kobayashi et al., Stem Cells, 2014). The receptor tyrosine kinase KIT can balance quiescence for HSC maintenance and proliferation for progeny supply. The defects seen in the PRL2-deficient hematopoietic and testis cells recapitulate the phenotype of c-Kit mutant mice, suggesting that the SCF/KIT signaling may be impaired in the absence of PRL2 (Kobayashi et al., Stem Cells, 2014; Dong et al., JBC, 2013). Given that KIT also plays critical role in maintaining postnatal T-lymphopoiesis in thymus, we hypothesized that PRL2 is important for T cell development. Here we report that loss of PRL2 impairs T-lymphopoiesis both in vitro and in vivo. PRL2 deficiency resulted in marked reduction of splenocyte and thymocyte counts compared to wild type (WT) mice. While we observed modest increase in the frequency of early T cell progenitor (ETP), DN2, and DN3 cells in PRL2 deficient thymus, T-cell reconstitution was dramatically decreased after HSC transplantation. T-cell number in the peripheral blood (PB) of recipient mice repopulated with PRL2-null HSCs was 30 times less than that of the WT HSCs (WT: 2288.6±579.8/µl vs PRL2 null: 69.5±22.1/µl, p<0.00001). Although the frequency of donor-derived thymocytes in recipient thymus was 91±6.1% in WT, PRL2 null HSCs contributed only 7.1±4.9% (p<0.00001) in the recipient thymus. By detailed fractionation, surprisingly, chimerism in ETP was comparable between WT and PRL2 null cells (WT: 91.8±10.1% vs PRL2 null: 59.6±13.5%, p<0.01). Importantly, the chimerism of PRL2-null thymocytes fell down to 10% in gated DN2, whereas WT HSCs consistently contributed around 90%, suggesting that the DN1-to-DN2 transition requires PRL2. Next, we evaluated the in vitro T-cell generation by utilizing the Delta-Like1 (DLL1) expressing OP9 (DL-OP9) stromal cells. While wild type KSLs produced massive amount of T-cells (fold increase: 33,000±3371) 22 days following plating onto the DL-OP9, PRL2 null KSLs only generated limited amount of T-cells (fold increase: 1765±665, p<0.0001), demonstrating that PRL2 is important for T-cell proliferation. We also monitored the generation of ETPs from KSLs in DL-OP9 cultures and observed significant expansion of ETPs derived from WT KSLs compared to that of the PRL2 null KSLs (fold increase: 183.8±14.4 vs 12.5±4.3, p<0.001). However, when sorted DN3 cells from WT and PRL2 KO thymus were plated onto DL-OP9, we saw similar increase in cell expansion, suggesting PRL2 regulate early T-cell development. WhilePRL2 is a dual specificity protein phosphatase, its substrates are unknown. To identifyPRL2 substrates in hematopoietic cells, we performed a protein phosphatase substrate trap assay. We utilized a GST-tagged PRL2/CS-DA mutant, in which the catalyticsite cysteine was mutated to serine, so that PRL2 binds to its substrates better, but is unable todephosphorylate them. We found that the mutant PRL2/CS-DA showed enhanced association with KIT than WT PRL2 in Kasumi-1 cells, suggesting that KIT is a potential PRL2 substrate. The PRL2 and KIT interaction was further confirmed by the Immunoprecipitation (IP) assay in 293T cells expressing KIT. We also detected the association of PRL2 with SHP2, CBL and PLC-g in Kasumi-1 cells, which are important regulators of KIT activation and stability. Moreover, PRL2 KO hematopoietic progenitor cells show decreased KIT phosphorylation at tyrosine 703 following SCF stimulation, suggesting that PRL2 may modulate KIT activation in these cells. To evaluate the impact of SCF signal strength on T-cell proliferation, we cultured sorted lympho-primed multipotent progenitor cells (LMPPs) from WT and KO mice onto DLL-Fc coated plates with graded doses of SCF (0.2, 1, 5, 25 ng/ml). The total number of cells generated from SCF treated WT LMPPs was significantly higher than that of the KO LMPPs in a dosage dependent manner. KO exhibited 6 times less sensitive to SCF than WT, indicating that PRL2 fine-tunes SCF signal intensity in early T-cell. Taken together, we have identified a critical role for PRL2 in T-cell proliferation and maintenance through fine-tuning SCF/KIT signaling. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 1 (15) ◽  
pp. 1101-1106 ◽  
Author(s):  
Stefano Vavassori ◽  
Jacob D. Galson ◽  
Johannes Trück ◽  
Anke van den Berg ◽  
Rienk Y. J. Tamminga ◽  
...  

Key Points FAS-dependent apoptosis in Vδ1 T cells makes the latter possible culprits for the lymphadenopathy observed in patients with FAS mutations. Rapamycin and methylprednisolone resistance should prompt clinicians to look for Vδ1 T cell proliferation in ALPS-FAS patients.


2011 ◽  
Vol 42 (2) ◽  
pp. 476-488 ◽  
Author(s):  
Ching-Yu Huang ◽  
Yu-Chun Lin ◽  
Wan-Yi Hsiao ◽  
Fang-Hsuean Liao ◽  
Pau-Yi Huang ◽  
...  

2021 ◽  
Vol 118 (4) ◽  
pp. e2019655118 ◽  
Author(s):  
Boyoung Shin ◽  
Hiroyuki Hosokawa ◽  
Maile Romero-Wolf ◽  
Wen Zhou ◽  
Kaori Masuhara ◽  
...  

Runt domain-related (Runx) transcription factors are essential for early T cell development in mice from uncommitted to committed stages. Single and double Runx knockouts via Cas9 show that target genes responding to Runx activity are not solely controlled by the dominant factor, Runx1. Instead, Runx1 and Runx3 are coexpressed in single cells; bind to highly overlapping genomic sites; and have redundant, collaborative functions regulating genes pivotal for T cell development. Despite stable combined expression levels across pro-T cell development, Runx1 and Runx3 preferentially activate and repress genes that change expression dynamically during lineage commitment, mostly activating T-lineage genes and repressing multipotent progenitor genes. Furthermore, most Runx target genes are sensitive to Runx perturbation only at one stage and often respond to Runx more for expression transitions than for maintenance. Contributing to this highly stage-dependent gene regulation function, Runx1 and Runx3 extensively shift their binding sites during commitment. Functionally distinct Runx occupancy sites associated with stage-specific activation or repression are also distinguished by different patterns of partner factor cobinding. Finally, Runx occupancies change coordinately at numerous clustered sites around positively or negatively regulated targets during commitment. This multisite binding behavior may contribute to a developmental “ratchet” mechanism making commitment irreversible.


2000 ◽  
Vol 20 (18) ◽  
pp. 6677-6685 ◽  
Author(s):  
Robert J. Barndt ◽  
Meifang Dai ◽  
Yuan Zhuang

ABSTRACT Lymphocyte development and differentiation are regulated by the basic helix-loop-helix (bHLH) transcription factors encoded by theE2A and HEB genes. These bHLH proteins bind to E-box enhancers in the form of homodimers or heterodimers and, consequently, activate transcription of the target genes. E2A homodimers are the predominant bHLH proteins present in B-lineage cells and are shown genetically to play critical roles in B-cell development. E2A-HEB heterodimers, the major bHLH dimers found in thymocyte extracts, are thought to play a similar role in T-cell development. However, disruption of either the E2A or HEBgene led to only partial blocks in T-cell development. The exact role of E2A-HEB heterodimers and possibly the E2A and HEB homodimers in T-cell development cannot be distinguished in simple disruption analysis due to a functional compensation from the residual bHLH homodimers. To further define the function of E2A-HEB heterodimers, we generated and analyzed a dominant negative allele of HEB, which produces a physiological amount of HEB proteins capable of forming nonfunctional heterodimers with E2A proteins. Mice carrying this mutation show a stronger and earlier block in T-cell development than HEB complete knockout mice. The developmental block is specific to the α/β T-cell lineage at a stage before the completion of V(D)J recombination at the TCRβ gene locus. This defect is intrinsic to the T-cell lineage and cannot be rescued by expression of a functional T-cell receptor transgene. These results indicate that E2A-HEB heterodimers play obligatory roles both before and after TCRβ gene rearrangement during the α/β lineage T-cell development.


Blood ◽  
2014 ◽  
Vol 123 (22) ◽  
pp. 3452-3461 ◽  
Author(s):  
Yang Wang ◽  
Xiaoguang Gu ◽  
Gaolei Zhang ◽  
Lin Wang ◽  
Tingting Wang ◽  
...  

Key Points SATB1 is specifically overexpressed in the CD30+ lymphoma cells in cutaneous CD30+ lymphoproliferative disease. SATB1 promotes proliferation of CD30+ lymphoma cells by direct transcriptional repression of cell cycle inhibitor p21.


Blood ◽  
2015 ◽  
Vol 126 (4) ◽  
pp. 504-507 ◽  
Author(s):  
Sabrina Geisberger ◽  
Ulrike Maschke ◽  
Matthias Gebhardt ◽  
Markus Kleinewietfeld ◽  
Arndt Manzel ◽  
...  

Key Points PRR deletion in T cells drastically reduces the number of peripheral and thymic CD3+ T cells. We identify multiple stages of thymocyte development that require PRR expression.


Blood ◽  
2013 ◽  
Vol 122 (5) ◽  
pp. 749-758 ◽  
Author(s):  
Francis Mussai ◽  
Carmela De Santo ◽  
Issa Abu-Dayyeh ◽  
Sarah Booth ◽  
Lynn Quek ◽  
...  

Key Points AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells. AML blasts have an arginase-dependent ability to modulate the polarization of monocytes.


Sign in / Sign up

Export Citation Format

Share Document