scholarly journals Interaction with an endothelial lumen increases neutrophil lifetime and motility in response to P aeruginosa

Blood ◽  
2018 ◽  
Vol 132 (17) ◽  
pp. 1818-1828 ◽  
Author(s):  
Laurel E. Hind ◽  
Patrick N. Ingram ◽  
David J. Beebe ◽  
Anna Huttenlocher

Abstract Neutrophil infiltration into tissues is essential for host defense and pathogen clearance. Although many of the signaling pathways involved in the transendothelial migration of neutrophils are known, the role of the endothelium in regulating neutrophil behavior in response to infection within interstitial tissues remains unclear. Here we developed a microscale 3-dimensional (3D) model that incorporates an endothelial lumen, a 3D extracellular matrix, and an intact bacterial source to model the host microenvironment. Using this system, we show that an endothelial lumen significantly increased neutrophil migration toward a source of Pseudomonas aeruginosa. Surprisingly, we found neutrophils, which were thought to be short-lived cells in vitro, migrate for up to 24 hours in 3D in the presence of an endothelial lumen and bacteria. In addition, we found that endothelial cells secrete inflammatory mediators induced by the presence of P aeruginosa, including granulocyte-macrophage colony-stimulating factor (GM-CSF), a known promoter of neutrophil survival, and interleukin (IL)-6, a proinflammatory cytokine. We found that pretreatment of neutrophils with a blocking antibody against the IL-6 receptor significantly reduced neutrophil migration to P aeruginosa but did not alter neutrophil lifetime, indicating that secreted IL-6 is an important signal between endothelial cells and neutrophils that mediates migration. Taken together, these findings demonstrate an important role for endothelial paracrine signaling in neutrophil migration and survival.

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1218-1221 ◽  
Author(s):  
JD Griffin ◽  
A Rambaldi ◽  
E Vellenga ◽  
DC Young ◽  
D Ostapovicz ◽  
...  

The interaction of acute myeloblastic leukemia (AML) cells with stromal cells was investigated by adding AML-conditioned media to cultures of human endothelial cells. This conditioned media contained factors that induced expression of both the granulocyte macrophage colony- stimulating factor (GM-CSF) and granulocyte CSF (G-CSF) genes and release of colony stimulating activity from endothelial cells. The conditioned media contained interleukin-1 (IL-1) bioactivity and the endothelial cell stimulatory activity was partially neutralized by anti- IL-1 antiserum. Constitutive expression of the IL-1-beta gene was detected in ten of 17 AML cases analyzed. These results suggest that the unregulated secretion of IL-1 by AML cells can induce stromal cells in vitro to overproduce CSFs. This could contribute to the unrestricted growth of AML cells.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1218-1221 ◽  
Author(s):  
JD Griffin ◽  
A Rambaldi ◽  
E Vellenga ◽  
DC Young ◽  
D Ostapovicz ◽  
...  

Abstract The interaction of acute myeloblastic leukemia (AML) cells with stromal cells was investigated by adding AML-conditioned media to cultures of human endothelial cells. This conditioned media contained factors that induced expression of both the granulocyte macrophage colony- stimulating factor (GM-CSF) and granulocyte CSF (G-CSF) genes and release of colony stimulating activity from endothelial cells. The conditioned media contained interleukin-1 (IL-1) bioactivity and the endothelial cell stimulatory activity was partially neutralized by anti- IL-1 antiserum. Constitutive expression of the IL-1-beta gene was detected in ten of 17 AML cases analyzed. These results suggest that the unregulated secretion of IL-1 by AML cells can induce stromal cells in vitro to overproduce CSFs. This could contribute to the unrestricted growth of AML cells.


Blood ◽  
1988 ◽  
Vol 72 (3) ◽  
pp. 1077-1080 ◽  
Author(s):  
JJ Jimenez ◽  
AA Yunis

We have previously demonstrated that cultured rat chloroleukemia cells, MIA C51, will terminally differentiate to macrophages when treated with rat lung-conditioned medium in vitro and in vivo. In the present study we fractionated rat monocyte-conditioned medium by ultrafiltration according to molecular size. The fraction with molecular weight (mol wt) 30 to 50 Kd containing partially purified granulocyte-macrophage colony-stimulating factor (GM-CSF) activity caused the differentiation of C51 cells to macrophages in vitro and in diffusion chambers in vivo. Treatment of young rats with this fraction aborted the development of chloroleukemia from transplanted C51 cells. In contrast, the fraction with mol wt 10 to 30 Kd containing virtually all the G-CSF activity exhibited no differentiation activity either in vitro or in vivo. It is concluded that in this rat myelogenous leukemia model partially purified GM-CSF but not G-CSF contains the effector molecule(s) causing terminal differentiation of C51 cells and tumor cell rejection.


Blood ◽  
1988 ◽  
Vol 72 (4) ◽  
pp. 1329-1332 ◽  
Author(s):  
DC Kaufman ◽  
MR Baer ◽  
XZ Gao ◽  
ZQ Wang ◽  
HD Preisler

Expression of the granulocyte-macrophage colony-stimulating factor (GM- CSF) gene in acute myelocytic leukemia (AML) was assayed by Northern blot analysis. GM-CSF messenger RNA (mRNA) was detected in the freshly obtained mononuclear cells of only one of 48 cases of AML, in contrast with recent reports that GM-CSF mRNA might be detected in half of the cases of AML when RNA is prepared from T-cell- and monocyte-depleted leukemic cells. We did find, however, that expression of the GM-CSF gene was detectable in five of ten cases after in vitro T-cell and monocyte depletion steps. Additional studies suggest that expression of GM-CSF in the bone marrow of the one positive case, rather than being autonomous, was under exogenous control, possibly by a paracrine factor secreted by marrow stromal cells. These studies emphasize the potential for altering in vivo patterns of gene expression by in vitro cell manipulation.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1912-1918 ◽  
Author(s):  
A Tobler ◽  
HP Marti ◽  
C Gimmi ◽  
AB Cachelin ◽  
S Saurer ◽  
...  

Abstract Tumor necrosis factor alpha (TNF alpha) stimulates granulocyte- macrophage colony-stimulating factor (GM-CSF) production in human fibroblasts and other mesenchymal cells. However, relatively little is known about agents that downregulate cytokine production in these cells. In the present report we show that dexamethasone (Dexa), a synthetic glucocorticoid, markedly reduced GM-CSF production in TNF alpha-stimulated fibroblasts at both the protein and the RNA levels. CSF activity, GM-CSF protein, and RNA levels, determined by an in vitro colony-forming assay in normal human bone marrow cells, by an enzyme immunoassay, and by Northern blotting assay, were reduced to greater than 90% of control values by Dexa (1 mumol/L). Similarly, 1,25- dihydroxyvitamin D3 [1,25(OH)2D3], a hormone with possible physiologic immunoregulatory significance, reduced GM-CSF expression in a concentration- and time-dependent manner. However, this repression was less pronounced than that of Dexa, and in part due to a decreased proliferative activity. In contrast, cyclosporine A (CsA), another immunosuppressive agent, did not alter GM-CSF expression in TNF alpha- stimulated fibroblasts. Our in vitro studies suggest that by inhibiting GM-CSF production in fibroblasts, glucocorticoids and possibly 1,25(OH)2D3, but not CsA, may attenuate TNF alpha-mediated inflammatory processes and influence the regulation of hematopoiesis.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4437-4447 ◽  
Author(s):  
Jason L. Hornick ◽  
Leslie A. Khawli ◽  
Peisheng Hu ◽  
Maureen Lynch ◽  
Peter M. Anderson ◽  
...  

Abstract Although monoclonal antibody (MoAb) therapy of the human malignant lymphomas has shown success in clinical trials, its full potential for the treatment of hematologic malignancies has yet to be realized. To expand the clinical potential of a promising human-mouse chimeric antihuman B-cell MoAb (chCLL-1) constructed using the variable domains cloned from the murine Lym-2 (muLym-2) hybridoma, fusion proteins containing granulocyte-macrophage colony-stimulating factor (GM-CSF) (chCLL-1/GM–CSF) or interleukin (IL)-2 (chCLL-1/IL–2) were generated and evaluated for in vitro cytotoxicity and in vivo tumor targeting. The glutamine synthetase gene amplification system was employed for high level expression of the recombinant fusion proteins. Antigenic specificity was confirmed by a competition radioimmunoassay against ARH-77 human myeloma cells. The activity of chCLL-1/GM–CSF was established by a colony formation assay, and the bioactivity of chCLL-1/IL–2 was confirmed by supporting the growth of an IL-2–dependent T-cell line. Antibody-dependent cellular cytotoxicity against ARH-77 target cells demonstrated that both fusion proteins mediate enhanced tumor cell lysis by human mononuclear cells. Finally, biodistribution and imaging studies in nude mice bearing ARH-77 xenografts indicated that the fusion proteins specifically target the tumors. These in vitro and in vivo data suggest that chCLL-1/GM–CSF and chCLL-1/IL–2 have potential as immunotherapeutic reagents for the treatment of B-cell malignancies.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2495-2502 ◽  
Author(s):  
Dale A. Moulding ◽  
Julie A. Quayle ◽  
C. Anthony Hart ◽  
Steven W. Edwards

Abstract Human neutrophils possess a very short half-life because they constitutively undergo apoptosis. Cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), and other agents can rescue neutrophils from apoptosis but the molecular mechanisms involved in this rescue are undefined. Here, we show by Western blotting that human neutrophils do not express Bcl-2 or Bcl-X but constitutively express Bax. However, cellular levels of these proteins are unaffected by agents which either accelerate or delay neutrophil apoptosis. In contrast, neutrophils express the antiapoptotic protein Mcl-1 and levels of this protein correlate with neutrophil survival. Thus, cellular levels of Mcl-1 decline as neutrophils undergo apoptosis and are enhanced by agents (eg, GM-CSF, interleukin-1β, sodium butyrate, and lipopolysaccharide) that promote neutrophil survival. Neutrophils only possess few, small mitochondria, and much of the Mcl-1 protein seems to be located in nuclear fractions. These observations provide the first evidence implicating a Bcl-2 family member in the regulation of neutrophil survival. Moreover, this work also provides a potential mechanism whereby cytokine-regulated gene expression regulates the functional lifespan of neutrophils and hence their ability to function for extended time periods during acute inflammation.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 145-151 ◽  
Author(s):  
RA Briddell ◽  
JE Brandt ◽  
JE Straneva ◽  
EF Srour ◽  
R Hoffman

Abstract Two classes of human marrow megakaryocyte progenitor cells are described. Colony-forming unit-megakaryocyte (CFU-MK)-derived colonies appeared in vitro after 12-day incubation; burst-forming unit- megakaryocyte (BFU-MK)-derived colonies appeared after 21 days. CFU-MK- derived colonies were primarily unifocal and composed of 11.6 +/- 1.2 cells/colony; BFU-MK-derived colonies were composed of 2.3 +/- 0.4 foci and 108.6 +/- 4.4 cells/colony. CFU-MK and BFU-MK were separable by counterflow centrifugal elutriation. CFU-MK colony formation was diminished by exposure to 5-fluorouracil (5-FU); BFU-MK colony formation was unaffected. CFU-MK and BFU-MK were immunologically phenotyped. CFU-MK expressed the human progenitor cell antigen-1 (HPCA- 1, CD34, clone My10) and a major histocompatibility class II locus, HLA- DR, and BFU-MK expressed only detectable amounts of CD34. BFU-MK colony formation was entirely dependent on addition of exogenous hematopoietic growth factors. Recombinant granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) possessed such colony- stimulating activity, whereas recombinant erythropoietin (Epo), G-CSF, IL-1 alpha, IL-4, and purified thrombocytopoiesis-stimulating factor did not. These studies indicate the existence of a human megakaryocyte progenitor cell, the BFU-MK, which has unique properties allowing it to be distinguished from the CFU-MK.


1987 ◽  
Vol 166 (5) ◽  
pp. 1436-1446 ◽  
Author(s):  
W Y Weiser ◽  
A Van Niel ◽  
S C Clark ◽  
J R David ◽  
H G Remold

Recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) obtained from cloned complementary Mo cell DNA and expressed in COS-1 cells activates cultured peripheral blood monocyte-derived macrophages in vitro to become cytotoxic for intracellular L. donovani. The antileishmanial effect of rGM-CSF, which can be completely neutralized by anti-rGM-CSF antiserum, is maximal after 36 h preincubation with the cultured macrophages, compared with that of rIFN-gamma, which reaches its maximum at 72 h of preincubation. The antileishmanial effect of GM-CSF as well as IFN-gamma is independent of detectable amounts of LPS and is not augmented by the addition of 10 or 50 ng/ml of LPS. Simultaneous administration of suboptimal doses of rGM-CSF and rIFN-gamma to monocyte-derived macrophages results in greater antileishmanial activity by these cells than administration of either lymphokine alone, although no enhancement of antileishmanial activity is observed when optimal doses of these two lymphokines are applied together.


2009 ◽  
Vol 21 (9) ◽  
pp. 44
Author(s):  
P. Y. Chin ◽  
A. M. Macpherson ◽  
J. G. Thompson ◽  
M. Lane ◽  
S. A. Robertson

In vitro culture has been shown to be detrimental for pre-implantation embryo development and this has been associated with culture stress and elevated expression of apoptotic genes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to promote development and survival of both human and mouse pre-implantation embryos. To investigate the mechanism of action of GM-CSF in mouse embryos, gene expression was examined in in vitro cultured blastocysts with and without recombinant mouse GM-CSF (rmGM-CSF) and in vivo blastocysts flushed from Csf2 null mutant and wild-type mice. Microarray analysis of the effect of GM-CSF on transcription profile implicated apoptosis and stress response gene pathways in blastocyst responses to rmGM-CSF in vitro. Groups of 30 blastocysts were collected from in vitro cultured and in vivo developed blastocyst were analysed using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis of in vitro blastocysts revealed that addition of rmGM-CSF causes differential expression of several genes associated with apoptosis and cellular stress pathway, including Cbl, Hspa5, Hsp90aa1, Hsp90ab1 and Gas5. Immunocytochemical analysis of common proteins of the apoptosis and cellular stress response pathways BAX, BCL2, TRP53 (p53) and HSPA1A/1B (Hsp70) in in vitro blastocysts revealed that HSPA1A/1B and BCL2 proteins were less abundant in embryos cultured in rmGM-CSF, but BAX and TRP53 were unchanged. In in vivo developed blastocysts, Csf2 null mutation resulted in elevated levels of only the heat shock protein Hsph1, suggesting that in vivo, other cytokines can compensate for GM-CSF deficiency as the absence of GM-CSF has a lesser effect on the stress response pathway. We conclude that GM-CSF is a regulator of the apoptosis and cellular stress response pathways influencing mouse pre-implantation embryo development to facilitate embryo growth and survival, and the effects of GM-CSF are particularly evident in in vitro culture media in the absence of other cytokines.


Sign in / Sign up

Export Citation Format

Share Document