scholarly journals Progression Risk-Based Classification of Asymptomatic Waldenström Macroglobulinemia

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 150-150
Author(s):  
Mark Bustoros ◽  
Romanos Sklavenitis-Pistofidis ◽  
Chia-jen Liu ◽  
Efstathios Kastritis ◽  
Geoffrey Fell ◽  
...  

Abstract Background. Waldenström macroglobulinemia (WM) is a low-grade non-Hodgkin's lymphoplasmacytic lymphoma associated with overproduction of monoclonal IgM protein. It is preceded by an asymptomatic stage, called Smoldering Waldenström Macroglobulinemia (SWM), associated with a high risk of progression to overt disease. Current understanding of progression risk in SWM is based on a few small studies, and it is still unclear how to distinguish the asymptomatic patients who will progress from those who will not. Patients and Methods. We obtained clinical data of all WM patients who had been diagnosed and followed up at Dana-Farber Cancer Institute from 1982 to the end of 2014. Only patients with asymptomatic disease at the time of diagnosis were included in this study to identify risk factors for disease progression. Patients who received chemotherapy for a second cancer, before or after asymptomatic WM diagnosis (n =24), were excluded as chemotherapy might have affected the natural course of disease. Patients who progressed to or were diagnosed later with other types of B-cell lymphoproliferative disorders or Amyloidosis (n =71) and patients with myeloproliferative disorders or thalassemia (n = 4) were all excluded from our cohort. Furthermore, we excluded patients with no morphologic evidence of lymphoplasmacytic infiltration in the bone marrow biopsy (n =37), those without a bone marrow biopsy done at time of diagnosis (n =21), and those who were treated for peripheral neuropathy alone (n =13). Progression was defined based on the Consensus Panel recommendations of the Second International Workshop on WM. Survival analysis was performed using the Kaplan-Meier method and differences between the curves were tested by log-rank test. Effects of potential risk factors on progression rates was examined using Cox proportional-hazards models, with hazard ratios (HRs) and associated 95% confidence intervals (CIs). Results. A total of 439 patients were included in the study. During the 35-year study period and a median follow up of 7.8 years, 317 patients (72.2%) progressed to symptomatic WM. The median time to progression was 3.9 (95% CI 3.2-4.6) years. In the multivariate analysis, IgM ≥ 4,500 mg/dL (adjusted HR 4.65; 95% CI 2.52-8.58; p < 0.001), BM lymphoplasmacytic infiltration ≥ 70% (adjusted HR 2.56; 95% CI 1.69-3.87; p < 0.001), β2-microglobulin ≥ 4.0 mg/dL (adjusted HR 2.31; 95% CI 1.19-4.49; p = 0.014), and albumin < 3.5 g/dL (adjusted HR 2.78; 95% CI 1.52-5.09; p = 0.001) were all identified as independent predictors of disease progression, suggesting those thresholds could be clinically useful for determining high-risk patients. On the other hand, given the continuous nature of these variables, we built a proportional hazards model based on four variables (Bone marrow infiltration percentage, serum IgM, albumin, β2-microglobulin). The model divided the cohort into 3 distinct risk groups: a high-risk group with a median time to progression (TTP) of 1.9 years (95% CI 1.64-2.13), an intermediate-risk group with median TTP of 4.6 years (95% CI 4.31-5.15), and a low-risk group with a median TTP of 8.1 years (95% CI 7.33-8.13)(See Figure). To enhance its clinical applicability, we made the model available as user interface through a webpage and mobile application, where clinicians can enter an individual SWM patient's lab values and get information regarding their risk group and estimated individual risk of progression to symptomatic WM. Conclusion. We have assembled the largest cohort of SWM patients to date, which allowed us to identify four independent predictors of progression to overt disease: BM infiltration ≥ 70%, IgM ≥ 4,500 mg/dL, b2m ≥ 4.0 mg/dL and albumin < 3.5 g/dL. Using those variables in a proportional hazards model, we developed a robust, flexible classification system based on risk of progression to symptomatic WM. This system stratifies SWM patients into low-, intermediate- and high-risk groups and thus has the potential to inform patient monitoring and care. Most importantly, it can help identify high-risk patients who might benefit from early intervention in this rare malignancy. Figure 1. Figure 1. Disclosures Bustoros: Dava Oncology: Honoraria. Kastritis:Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Prothena: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Soiffer:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Treon:Johnson & Johnson: Consultancy; Janssen: Consultancy, Other: Travel, Accommodations, Expenses; BMS: Research Funding; Pharmacyclics: Consultancy, Other: Travel, Accommodations, Expenses, Research Funding. Castillo:Genentech: Consultancy; Millennium: Research Funding; Abbvie: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Beigene: Consultancy, Research Funding; Pharmacyclics: Consultancy, Research Funding. Dimopoulos:Amgen: Honoraria; Janssen: Honoraria; Takeda: Honoraria; Celgene: Honoraria; Bristol-Myers Squibb: Honoraria. Ghobrial:BMS: Consultancy; Janssen: Consultancy; Takeda: Consultancy; Celgene: Consultancy.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5076-5076 ◽  
Author(s):  
Salomon Manier ◽  
Remy Dulery ◽  
Alain Duhamel ◽  
Eileen Boyle ◽  
Julien Rossignol ◽  
...  

Abstract Abstract 5076 Background. Waldenstrom macroglobulinemia (WM) is a low grade B cell lymphoma characterized by bone marrow infiltration of lymphoplasmacytic tumor cells that secrete monoclonal IgM (M-protein) into the serum. Measurement of the serum M-protein [using serum protein electrophoresis (SPEP)] and measurement of total IgM (using nephelometry) are used to diagnose and monitor WM. There are, however, many limitations with these techniques and new markers are needed. IgG and IgA Hevylite® immunoassays have been reported to be more sensitive than SPEP and nephelometry for identifying monoclonal immunoglobulins in multiple myeloma and unlike immunofixation, provide quantitative information. We hypothesized that serum IgM Hevylite assays (specifically measuring IgMkappa and IgMlambda, separately) would accurately identify serum IgM M-proteins. We also evaluated the association between known tumor burden markers and prognostic factors with IgM Hevylite results in patients with WM. Method. We retrospectively measured IgMkappa and IgMlambda in sera from 59 WM patients: 44 patients were at diagnosis and 15 had relapsed disease. The diagnosis of WM was made according to the current guidelines. All serum samples were kept frozen in the Lille serum bank since collection. All patients gave informed consent prior to the collection and none were treated at time of collection of the serum. Approval of this protocol was obtained from the CHRU Lille and was in accordance with the Declaration of Helsinki. Hevylite measurements were made at The Binding Site Ltd, Birmingham, UK. A normal range was produced from normal (blood donor) sera (n=120), median (and 95%ile ranges) were; IgMkappa 0.634g/L (0.29-1.82), IgMlambda 0.42g/L (0.17-0.94), IgMkappa/IgMlambda ratio 1.6 (0.95-2.3). For ease of comparison IgM hevylite ratios were expressed as the involved monoclonal immunoglobulin/uninvolved polyclonal immunoglobulin (IgMi). To describe the distribution of IgMi Hevylite levels in patients with WM, the median and range (min-max) were reported. Median values were compared using the Wilcoxon rank-sum test and ANOVA. Fisher's exact test was used to compare proportions. All statistical tests were two-sided. All analyses were conducted using SPSSv12 software. Results. The baseline characteristics of the patients were as follows: the median (range) age was 68 years (41-86), male/female 38/21, serum b2M 3.0mg/L (1.2-9.0), hemoglobin 11.8g/dL (7.6-15.4), platelet count 267 ×109/mm3 (55-741), serum M-spike 19g/L (3.0-52.7). In our series, 18 (31%), 22 (37%) and 19 (32%) patients had low, intermediate and high risk disease respectively, in the WM-IPSS scoring system. The median (min-max) IgMkappa ratio was 134 (8.7-2850) and IgMlambda ratio was 0.03 (0.0007-0.39). IgMi Hevylite ratio was 98.07 (2.59-2850). The IgMi Hevylite correlated well with the M-spike measured using SPEP (r=0.601, p<0.0001). In our study, high IgMi Hevylite levels correlated well with markers of high tumor burden and of poor prognosis. The median (range) IgMi Hevylite level was higher in patients with hemoglobin <10g/dL versus ≥10 g/dL, 267 (8.1-1722) and 76 (2.6-2850) respectively (p=0.013). The median (range) IgMi Hevylite ratio level was significantly (p=0.033) higher in the high risk IPSS group 208 (2.6-2850) than in the intermediate 75 (15-1033) and low risk groups, 98 (8-571). The IgMi Hevylite levels also separated WM patients with progressive disease who required therapy. Twenty seven pts were symptomatic and required specific treatment for WM, and 32 pts were left untreated. The median IgMi Hevylite ratio was significantly higher in progressing patients, 210 (8.1-2850) and 60 (2.6-571) in the 2 groups, respectively (p=0.014). Conclusion. In this study we demonstrated that IgM Hevylite measurement is a new and reliable marker for monitoring WM disease. It is related to poor prognostic markers that separate WM patients with progressive disease who require therapy. We are currently expanding the cohort to confirm these observations. These findings have implications in the management of patients with WM. Disclosures: Leblond: Roche: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Mundipharma: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genzyme: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees. Leleu:Celgene: Consultancy, Research Funding; Janssen Cilag: Consultancy, Research Funding; Leo Pharma: Consultancy; Amgen: Consultancy; Chugai: Research Funding; Roche: Consultancy, Research Funding; Novartis: Consultancy, Research Funding.


2019 ◽  
Vol 37 (16) ◽  
pp. 1403-1411 ◽  
Author(s):  
Mark Bustoros ◽  
Romanos Sklavenitis-Pistofidis ◽  
Prashant Kapoor ◽  
Chia-Jen Liu ◽  
Efstathios Kastritis ◽  
...  

BACKGROUND Waldenström macroglobulinemia (WM) is preceded by asymptomatic WM (AWM), for which the risk of progression to overt disease is not well defined. METHODS We studied 439 patients with AWM, who were diagnosed and observed at Dana-Farber Cancer Institute between 1992 and 2014. RESULTS During the 23-year study period, with a median follow-up of 7.8 years, 317 patients progressed to symptomatic WM (72%). Immunoglobulin M 4,500 mg/dL or greater, bone marrow lymphoplasmacytic infiltration 70% or greater, β2-microglobulin 4.0 mg/dL or greater, and albumin 3.5 g/dL or less were all identified as independent predictors of disease progression. To assess progression risk in patients with AWM, we trained and cross-validated a proportional hazards model using bone marrow infiltration, immunoglobulin M, albumin, and beta-2 microglobulin values as continuous measures. The model divided the cohort into three distinct risk groups: a high-risk group with a median time to progression (TTP) of 1.8 years, an intermediate-risk group with a median TTP of 4.8 years, and a low-risk group with a median TTP of 9.3 years. We validated this model in two external cohorts, demonstrating robustness and generalizability. For clinical applicability, we made the model available as a Web page application ( www.awmrisk.com ). By combining two cohorts, we were powered to identify wild type MYD88 as an independent predictor of progression (hazard ratio, 2.7). CONCLUSION This classification system is positioned to inform patient monitoring and care and, for the first time to our knowledge, to identify patients with high-risk AWM who may need closer follow-up or benefit from early intervention.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4150-4150 ◽  
Author(s):  
Eva Kimby ◽  
Sandra Lockmer ◽  
Harald Holte ◽  
Björn E Wahlin ◽  
Hans Hagberg ◽  
...  

Abstract Background: Follicular lymphoma (FL) is a heterogenous disease. The optimal timing, sequence and choice of therapy remain matters of debate and there is no optimal prognostic tool. The FLIPI (Follicular Lymphoma International Prognostic Index) is based on five bio-clinical parameters and is widely used, but not as guide for choice of treatment. Recently a new prognostic score (PRIMA-PI), based solely on two parameters, bone marrow involvement and serum beta2 microglobulin (ß2m) was proposed for patients treated with immunochemotherapy (Bachy E., Blood 2018). The Nordic Lymphoma Group (NLG) performed two randomized trials including patients with symptomatic/progressive indolent CD20+ lymphoma, with rituximab monotherapy or rituximab in combination with interferon (IFN)-α2a as primary treatment, without maintenance (Kimby E., 2008, 2015). The 10 years follow-up of these patients showed a good survival with no major safety issues and no need for later chemotherapy in 38% of FL patients (Lockmer S, JCO 2018). Aim/Purpose: To evaluate two different prognostic systems (the new PRIMA-PI and the FLIPI), for overall survival (OS) and time to treatment failure (TTF) in a cohort of symptomatic/progressive FL patients treated with a rituximab-containing first-line regimen without chemotherapy. Methods: Previously untreated patients with a confirmed FL diagnosis (n=269) or indolent lymphoma not otherwise specified (n=22, most FLs with insufficient material for grading), treated in the NLG randomized trials with two cycles rituximab (375 mg/m2 x 4 weeks), with or without IFN-α2a, were classified into the three PRIMA-PI categories: high-risk: ß2m> 3mg / L, intermediate-risk: ß2m ≤ 3 mg / L with bone marrow involvement and low-risk: ß2m ≤ 3 mg / without bone marrow involvement. The FLIPI scores were also assessed. TTF, defined as the interval between randomization and either initiation of new lymphoma therapy due to relapse or intolerance, or death from any cause, as well as OS were estimated using the Kaplan Meier method. The log-rank test was used for comparison between risk groups. Results: Out of 291 patients, 252 had complete data on PRIMA-PI and FLIPI (at the time of randomization in the original trials) and were available for analyses of TTF and OS. Patient characteristics are shown in Table 1. PRIMA-PI seemed to identify a true high-risk group of 47 patients, 32 of them being high risk also according to FLIPI, while a larger patient group (n=117) was classified as FLIPI high-risk. After a long follow-up time, median 9.9 years (0.4 -18.8) from randomization, median 10.6 years for the 214 patients (74%) still alive, 76 patients (26%) were failure-free and 108 (37%) without need of any chemotherapy, Patients with PRIMA-PI high showed a shorter TTF compared to PRIMA-PI intermediate and low (Fig 1a), whereas the FLIPI risk-groups were not significantly separated (Fig 1b). Evidence of transformation to aggressive disease was seen in 55 patients, with no significant difference in frequency between the PRIMA-PI groups, nor between FLIPI groups. Both PRIMA-PI and FLIPI were of significant value for predicting OS, most evident after a long follow-up time (Fig 1c and d). In 41 patients the cause of death was progressive disease or therapy complications, regarded as lymphoma-related death, whereas 21 died of other causes. The lymphoma-specific survival was related to the PRIMA-PI (log-rank p=0.03), but not to the FLIPI (n.s). Prognosis was worse for the PRIMA-PI high-risk group than the for the low-risk, also when adjusted for sex, high age (>60 years), diagnosis, stage, ECOG and FLIPI risk-group; TTF HR 1.82 (95% CI 1.16-2.85, p=0.01) and OS HR 2.3 (95% CI 1.00-5.38, p=0.05). Conclusion: FL patients included in two NLG trials with complete clinical data and a median follow-up of >10 years after randomization have been assessed for validation of different prognostic indices. In these patients, all with chemo-free first-line therapy, the PRIMA-PI was shown a valid predictor of both TTF and OS and seemed more useful than the FLIPI. The PRIMA-PI high risk identified a group of patients (19% of all) with true poor prognosis. Disclosures Kimby: Roche: Honoraria; Roche: Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead: Honoraria; AbbVie: Membership on an entity's Board of Directors or advisory committees. Holte:Novartis Pharmaceuticals Corporation: Membership on an entity's Board of Directors or advisory committees; Roche, Norway: Research Funding. Wahlin:Roche: Research Funding; Gilead: Consultancy, Honoraria, Research Funding. Hagberg:Roche: Honoraria.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 804-804 ◽  
Author(s):  
Mark Bustoros ◽  
Chia-jen Liu ◽  
Kaitlen Reyes ◽  
Kalvis Hornburg ◽  
Kathleen Guimond ◽  
...  

Abstract Background. This study aimed to determine the progression-free survival and response rate using early therapeutic intervention in patients with high-risk smoldering multiple myeloma (SMM) using the combination of ixazomib, lenalidomide, and dexamethasone. Methods. Patients enrolled on study met eligibility for high-risk SMM based on the newly defined criteria proposed by Rajkumar et al., Blood 2014. The treatment plan was designed to be administered on an outpatient basis where patients receive 9 cycles of induction therapy of ixazomib (4mg) at days 1, 8, and 15, in combination with lenalidomide (25mg) at days 1-21 and Dexamethasone at days 1, 8, 15, and 22. This induction phase is followed by ixazomib (4mg) and lenalidomide (15mg) maintenance for another 15 cycles. A treatment cycle is defined as 28 consecutive days, and therapy is administered for a total of 24 cycles total. Bone marrow samples from all patients were obtained before starting therapy for baseline assessment, whole exome sequencing (WES), and RNA sequencing of plasma and bone marrow microenvironment cells. Moreover, blood samples were obtained at screening and before each cycle to isolate cell-free DNA (cfDNA) and circulating tumor cells (CTCs). Stem cell collection is planned for all eligible patients. Results. In total, 26 of the planned 56 patients were enrolled in this study from February 2017 to April 2018. The median age of the patients enrolled was 63 years (range, 41 to 73) with 12 males (46.2%). Interphase fluorescence in situ hybridization (iFISH) was successful in 18 patients. High-risk cytogenetics (defined as the presence of t(4;14), 17p deletion, and 1q gain) were found in 11 patients (61.1%). The median number of cycles completed was 8 cycles (3-15). The most common toxicities were fatigue (69.6%), followed by rash (56.5%), and neutropenia (56.5%). The most common grade 3 adverse events were hypophosphatemia (13%), leukopenia (13%), and neutropenia (8.7%). One patient had grade 4 neutropenia during treatment. Additionally, grade 4 hyperglycemia occurred in another patient. As of this abstract date, the overall response rate (partial response or better) in participants who had at least 3 cycles of treatment was 89% (23/26), with 5 Complete Responses (CR, 19.2%), 9 very good partial responses (VGPR, 34.6%), 9 partial responses (34.6%), and 3 Minimal Responses (MR, 11.5%). None of the patients have shown progression to overt MM to date. Correlative studies including WES of plasma cells and single-cell RNA sequencing of the bone microenvironment cells are ongoing to identify the genomic and transcriptomic predictors for the differential response to therapy as well as for disease evolution. Furthermore, we are analyzing the cfDNA and CTCs of the patients at different time points to investigate their use in monitoring minimal residual disease and disease progression. Conclusion. The combination of ixazomib, lenalidomide, and dexamethasone is an effective and well-tolerated intervention in high-risk smoldering myeloma. The high response rate, convenient schedule with minimal toxicity observed to date are promising in this patient population at high risk of progression to symptomatic disease. Further studies and longer follow up for disease progression are warranted. Disclosures Bustoros: Dava Oncology: Honoraria. Munshi:OncoPep: Other: Board of director. Anderson:C4 Therapeutics: Equity Ownership; Celgene: Consultancy; Bristol Myers Squibb: Consultancy; Takeda Millennium: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Oncopep: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Ghobrial:Celgene: Consultancy; Takeda: Consultancy; Janssen: Consultancy; BMS: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2823-2823 ◽  
Author(s):  
Catriona HM Jamieson ◽  
Robert P Hasserjian ◽  
Jason Gotlib ◽  
Jorge E. Cortes ◽  
Richard M. Stone ◽  
...  

Abstract Introduction Fedratinib, a JAK2-selective inhibitor, demonstrated clinical benefit through a reduction in splenomegaly and symptoms in patients with myelofibrosis (MF), including post-polycythemia vera MF (post-PV MF), post-essential thrombocythemia MF (post-ET MF) and primary MF (PMF), in Phase I and II studies (J Clin Oncol 2011;29:789; Haematologica 2013;98:S1113). Bone marrow fibrosis (BMF) has been associated with splenomegaly and cytopenias (Ann Hematol 2006;85:226). Hence, stabilization and/or reversal of BMF remain important therapeutic goals. This report represents an exploratory analysis of sequential BMF data from patients with MF in an open-label Phase I/II study to evaluate the long-term effects of orally administered fedratinib (TED12015; NCT00724334). Methods Patients with intermediate or high-risk MF (Mayo Prognostic Scoring System) received fedratinib therapy in consecutive cycles (1 cycle = 28 days) as long as they derived clinical benefit. Bone marrow trephine biopsies were performed at baseline and after every 6 cycles. Hematoxylin and eosin, reticulin, and Masson's trichrome staining of core biopsy slides were used to grade BMF on a scale from 0 to 3 using the 2008 WHO MF grading criteria. BMF was graded independently in a blinded fashion by 3 hematopathologists. BMF grades were established as long as at least 2 of the 3 pathologists agreed independently. Changes in BMF grade from baseline were categorized as improvement (≥1 grade reduction), stabilization (no change), or worsening (≥1 grade increase). Results Of the 43 patients enrolled in the TED12015 study, the median fedratinib dose received was 473 (range 144–683) mg/day and median treatment duration was 32.3 (range 7–61) cycles. Bone marrow biopsies at baseline and at least one other time point were available for 21/43 (49%) patients, whose baseline characteristics were: median age 61 years (range 43–85); 57% male; 38% high-risk MF by WHO 2008 criteria (Leukemia 2008; 22:14); and 90% JAK2V617F positive. A consensus grade was achieved for 96% of the samples. At baseline, 2, 10, and 9 patients had grade 1, 2, and 3 BMF, respectively. Changes in BMF grade from baseline are shown in the figure. BMF improvement with 1 grade reduction was observed in 8/18 (44%) patients at Cycle 6. By Cycle 30, 4/9 (44%) evaluable patients had BMF improvement, including 2 patients with improvement by 2 grades and 2 patients with improvement by 1 grade. Of patients with Grade 3 BMF at baseline, 6/9 (67%) exhibited 1 grade improvement at Cycle 6. Two patients had 2 grades of BMF reduction from baseline during treatment (grade 3 to 1, and grade 2 to 0, both at Cycle 12), and the latter achieved a complete clinical remission at Cycle 30 assessed by IWG-MRT response criteria. The two patients who experienced complete reversal of BMF to grade 0 (one from grade 2 and one from grade 1) had normalization of not only hemoglobin level but also white blood cell and platelet counts at Cycle 18. Conclusions These exploratory analyses suggest that a proportion of patients treated long-term with fedratinib demonstrate stable or improved BMF. The disease modifying impact of fedratinib on BMF changes will be further assessed in a randomized, placebo-controlled Phase III clinical trial (JAKARTA; NCT01437787). This study was sponsored by Sanofi. Disclosures: Jamieson: J&J, Roche: Research Funding; Sanofi: Membership on an entity’s Board of Directors or advisory committees. Hasserjian:Sanofi, Inc: Consultancy. Gotlib:Sanofi: Travel to EHA 2012, Travel to EHA 2012 Other; Sanofi: Membership on an entity’s Board of Directors or advisory committees; Sanofi: Research Funding. Cortes:Incyte, Sanofi: Consultancy; Incyte, Sanofi: Research Funding. Talpaz:Novartis, Bristol-Myers Squibb, Ariad, Deciphera: Research Funding; Novartis, Bristol-Myers Squibb, Ariad, Deciphera: Speakers Bureau. Thiele:AOP Orphan Pharmaceuticals, Incyte, Novartis, Shire, Sanofi: Consultancy; Novartis, Shire: Research Funding; AOP Orphan Pharmaceuticals, Incyte, Novartis, Shire, Sanofi: Honoraria. Rodig:Ventana/Roche Inc.: Research Funding; Daiichi-Sankyo/Arqule Inc., Ventana/Roche Inc., Shape Pharmaceuticals Inc.: Consultancy. Patki:Sanofi: Employment. Wu:Sanofi: Employment. Wu:Sanofi: Employment. Pozdnyakova:Sanofi: Honoraria; Sanofi: Consultancy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 711-711 ◽  
Author(s):  
Jean-Jacques Kiladjian ◽  
Florian H Heidel ◽  
Alessandro M. Vannucchi ◽  
Vincent Ribrag ◽  
Francesco Passamonti ◽  
...  

Abstract Background: Myelofibrosis (MF) is a clonal neoplastic disease resulting in bone marrow fibrosis, splenomegaly, and debilitating constitutional symptoms. The Janus kinase (JAK) pathway is often dysregulated in MF, and agents targeting this pathway have demonstrated efficacy in this disease. Ruxolitinib (RUX), a potent JAK1/JAK2 inhibitor, demonstrated superiority in spleen volume reduction, symptom improvement, and survival compared with the control arm in the phase III COMFORT-I and COMFORT-II studies. Panobinostat (PAN), a potent pan-deacetylase inhibitor (pan-DACi), inhibits JAK signaling through disruption of the interaction of JAK2 with the protein chaperone heat shock protein 90. In phase I/II studies, PAN has shown splenomegaly reduction and improvement of bone marrow fibrosis. The combination of RUX and PAN demonstrated synergistic anti-MF activity in preclinical studies. These preliminary results led to the initiation of a phase Ib study evaluating the combination of RUX and PAN in patients (pts) with MF. The updated results from the expansion phase of this trial are presented here. Methods: Eligible pts had intermediate-1, -2, or high-risk primary MF, post-polycythemia vera MF, or post-essential thrombocythemia MF by International Prognostic Scoring System criteria, with palpable splenomegaly (≥ 5 cm below the costal margin). The primary objective was determination of the maximum tolerated dose (MTD) and/or recommended phase II dose (RPIID). Secondary objectives included safety, efficacy, and pharmacokinetics. Exploratory endpoints included assessment of improvement in bone marrow fibrosis and reduction of JAK2 V617F allele burden. The treatment schedule was RUX (5-15 mg) twice daily (bid) every day and PAN (10-25 mg) once daily 3 times per week (tiw; days 2, 4, and 6) every other week (qow) in a 28-day cycle. Following dose escalation and identification of the potential RPIID, additional pts were enrolled into the expansion phase and treated at this dose. Results: As of March 14, 2014, a total of 61 pts were enrolled (38 escalation phase and 23 expansion phase). The median duration of exposure to PAN and to RUX was 24.6 weeks and 24.0 weeks, respectively, for pts treated in the expansion phase. Three DLTs were observed in the escalation phase (grade 4 thrombocytopenia [n = 2], grade 3 nausea [n = 1]). No MTD was reached. The RPIID was confirmed to be RUX 15 mg bid and PAN 25 mg tiw qow in May 2014. Among the 34 pts treated at the RPIID, grade 3/4 adverse events (AEs) regardless of causality included anemia (32%), thrombocytopenia (24%), diarrhea (12%), asthenia (9%), and fatigue (9%). AEs led to discontinuation in 6% of pts treated at the RPIID. Two pts treated at the RPIID died due to causes unrelated to study treatment (1 due to myocardial infarction and 1 due to progression of myelofibrosis). Among the pts treated at the RPIID, 79% showed a >50% decrease in palpable spleen length, with 100% decrease (non-palpable spleen) being observed in 53% of pts. Additionally, 48% of pts treated at the RPIID in the expansion phase achieved ≥35% reduction in spleen volume (Figure). These results are similar to those observed for spleen volume response at 24 weeks among pts who received single-agent RUX on the phase III COMFORT-I (41.9%) and COMFORT-II (32%) studies. Conclusions: The combination of the JAK1/JAK2 inhibitor RUX and the pan-DACi PAN was well tolerated and resulted in high rates of reductions in splenomegaly in pts with intermediate- and high-risk MF. Although a relatively larger proportion of patients experienced spleen volume reductions at week 24 as compared to the COMFORT studies, the smaller sample size, shorter follow up times and potential differences in the patient populations preclude definitive comparisons. Similar to COMFORT-I and II trials, hematological AEs, specifically anemia and thrombocytopenia, were the most common AEs observed in pts treated with the combination therapy. Pts continue to be treated in the expansion phase at the RPIID. Updated safety, efficacy, and exploratory analyses on bone marrow fibrosis, JAK V617F allele burden, and biomarkers, including cytokines, will be presented. Figure Change in Spleen Volume in Expansion Phase Figure. Change in Spleen Volume in Expansion Phase Disclosures Kiladjian: Novartis: Honoraria, Research Funding, Speakers Bureau; Shire: Membership on an entity's Board of Directors or advisory committees; AOP Orphan: Honoraria, Research Funding. Heidel:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees. Vannucchi:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ribrag:Celgene: Consultancy; Pharmamar: Consultancy; Epizyme: Research Funding; Bayer: Consultancy, Research Funding; Servier: Consultancy, Honoraria, Research Funding. Conneally:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BMS: Honoraria, Speakers Bureau; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Kindler:Novartis: Consultancy. Acharyya:Novartis: Employment. Gopalakrishna:Novartis: Employment. Ide:Novartis: Employment, Equity Ownership. Loechner:Novartis: Employment. Mu:Novartis: Employment. Harrison:Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Sanofi: Consultancy, Honoraria; CTI: Consultancy, Honoraria; Gilead: Honoraria; SBio: Consultancy; Shire: Speakers Bureau.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 723-723
Author(s):  
Shankara Anand ◽  
Mark Bustoros ◽  
Romanos Sklavenitis-Pistofidis ◽  
Robert A. Redd ◽  
Eileen M Boyle ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is an incurable plasma cell malignancy commonly preceded by the asymptomatic stage smoldering multiple myeloma (SMM). MM is characterized with significant genomic heterogeneity of chromosomal gains and losses (CNVs), translocations, and point mutations (SNVs); alterations that are also observed in SMM patients. However, current SMM risk models rely solely on clinical markers and do not accurately capture progression risk. While incorporating some genomic biomarkers improves prediction, using all MM genomic features to comprehensively stratify patients may increase risk stratification precision in SMM. Methods: We obtained a total of 214 patient samples at SMM diagnosis. We performed whole-exome sequencing on 166 tumors; of these, RNA sequencing was performed on 100. Targeted capture was done on 48 additional tumors. Upon binarization of DNA features, we performed consensus non-negative matrix factorization to identify distinct molecular clusters. We then trained a random forest classifier on translocations, SNVs, and CNVs. The predicted clinical outcomes for the molecular subtypes were further validated in an independent SMM cohort of 74 patients. Results: We identified six genomic subtypes, four with hyperdiploidy (&gt;48 chromosomes, HMC, HKR, HNT, HNF) and two with IgH translocations (FMD, CND) (Table 1). In multivariate analysis accounting for IMWG (20-2-20) clinical risk stages, high-risk (HMC, FMD, HKR) and intermediate-risk (HNT, HNF) genetic subtypes were independent predictors of progression (Hazards ratio [HR]: 3.8 and 5.5, P = 0.016 and 0.001, respectively). The low-risk, CND subtype harboring translocation (11;14) was enriched for the previously defined CD-2 MM signature defined by the B cell markers CD20 and CD79A (FDR = 0.003 ), showed upregulation of CCND1, E2F1, and E2F7 (FDR = 0.01, 0.0004, 0.08), and was enriched for G2M checkpoint, heme metabolism, and monocyte cell signature (FDR = 0.003, 0.003, 0.003, respectively). The FMD subtype with IgH translocations (4;14) and (14;16) was enriched for P53, mTORC1, unfolded protein signaling pathways and plasmacytoid dendritic cell signatures (FDR = 0.01, 0.005, 0.008, respectively). The HKR tumors were enriched for inflammatory cytokine signaling, MYC target genes, T regulatory cell signature, and the MM proliferative (PR) signatures (FDR = 0.02, 0.03, 0.007, 0.02, respectively). The APOBEC mutational signature was enriched in HMC and FMD tumors (P = 0.005), while there was no statistical difference across subtypes in the AID signature. The median follow-up for the primary cohort is 7.1 years. Median TTP for patients in HMC, FMD, and HKR was 3.8, 2.6, and 2.2 years, respectively; TTP for HNT and HNF was 4.3 and 5.2, respectively, while it was 11 years in CND patients (P = 0.007). Moreover, by analyzing the changes in MM clinical biomarkers over time, we found that patients from high-risk subgroups had higher odds of developing evolving hemoglobin and monoclonal protein levels over time (P = 0.01 and 0.002, respectively); Moreover, the absolute increase in M-protein was significantly higher in patients from the high-risk genetic subtypes at one, two, and five years from diagnosis (P = 0.001, 0.03, and 0,01, respectively). Applying the classifier to the external cohort replicated our findings where intermediate and high-risk genetic subgroups conferred increased risk of progression to MM in multivariate analysis after accounting for IMWG staging (HR: 5.5 and 9.8, P = 0.04 and 0.005, respectively). Interestingly, within the intermediate-risk clinical group in the primary cohort, patients in the high-risk genetic subgroups had increased risk of progression (HR: 5.2, 95% CI 1.5 - 17.3, P = 0.007). In the validation cohort, these patients also had an increased risk of progression to MM (HR: 6.7, 95% CI 1.2 - 38.3, P = 0.03), indicating that molecular classification improves the clinical risk-stratification models. Conclusion: We identified and validated in an independent dataset six SMM molecular subgroups with distinct DNA alterations, transcriptional profiles, dysregulated pathways, and risks of progression to active MM. Our results underscore the importance of molecular classification in addition to clinical evaluation in better identifying high-risk SMM patients. Moreover, these subgroups may be used to identify tumor vulnerabilities and target them with precision medicine efforts. Figure 1 Figure 1. Disclosures Bustoros: Janssen, Bristol Myers Squibb: Honoraria, Speakers Bureau; Takeda: Consultancy, Honoraria. Casneuf: Janssen: Current Employment. Kastritis: Amgen: Consultancy, Honoraria, Research Funding; Takeda: Honoraria; Pfizer: Consultancy, Honoraria, Research Funding; Genesis Pharma: Honoraria; Janssen: Consultancy, Honoraria, Research Funding. Walker: Bristol Myers Squibb: Research Funding; Sanofi: Speakers Bureau. Davies: Takeda: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Roche: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Dimopoulos: Amgen: Honoraria; BMS: Honoraria; Takeda: Honoraria; Beigene: Honoraria; Janssen: Honoraria. Bergsagel: Genetech: Consultancy, Honoraria; Oncopeptides: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Patents & Royalties: human CRBN mouse; GSK: Consultancy, Honoraria; Celgene: Consultancy, Honoraria. Yong: BMS: Research Funding; Autolus: Research Funding; Takeda: Honoraria; Janssen: Honoraria, Research Funding; Sanofi: Honoraria, Research Funding; GSK: Honoraria; Amgen: Honoraria. Morgan: BMS: Membership on an entity's Board of Directors or advisory committees; Jansen: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees. Getz: IBM, Pharmacyclics: Research Funding; Scorpion Therapeutics: Consultancy, Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3192-3192 ◽  
Author(s):  
Theresia Akhlaghi ◽  
Even H Rustad ◽  
Venkata D Yellapantula ◽  
Neha Korde ◽  
Sham Mailankody ◽  
...  

Abstract Introduction Smoldering multiple myeloma (SMM) is an asymptomatic precursor stage to active multiple myeloma (MM), comprised by a heterogenous group of patients with varying rates of progression. While the overall yearly progression rate is 10% the first 5 years, some patients progress at a considerably higher rate. A study from the Mayo Clinic showed that in a subset of 21 patients defined by ≥60% monoclonal bone marrow plasma cells (BMPC), 95% progressed within 2 years. It was subsequently concluded by the International Myeloma Working Group (IMWG) that patients with biomarkers predictive of a 2-year progression rate at 80%, and a median time to progression at 12 months were at ultra-high risk of progression and should be considered to have MM requiring treatment despite being asymptomatic. In 2014, ultra-high risk biomarkers were incorporated in the definition of MM, including BMPC ≥60%, free light chain (FLC) ratio ≥100 and ≥2 focal lesions on magnetic resonance imaging (MRI). While the updated myeloma definition changed the diagnosis of some patients with ultra-high risk SMM to MM, there remain patients classified as SMM progressing at a very high rate. In the present study, we aimed at further identifying ultra-high risk biomarkers predictive of a high rate of progression to active MM. Methods Patients with SMM presenting to Memorial Sloan Kettering Cancer Center between the years 2000 and 2017 were identified and included in the study. Diagnosis of SMM and progression to MM requiring therapy was defined according to the IMWG criteria at the time of diagnosis. Baseline patient and disease characteristics were collected at date of diagnosis with SMM, including pathology reports, laboratory results and imaging data. Time to progression (TTP) was assessed using the Kaplan-Meier method with log-rank test for comparisons. Optimal cut-off values for continuous variables were assessed with receiver operating characteristics (ROC) curve. Patients who had not progressed by the end of study or were lost to follow up were censored at the date of last visit. Univariate Cox regression was used to estimate risk factors for TTP with hazard ratios (HR) and 95% confidence intervals (CI). Significant univariate risk factors were selected for multivariate Cox regression. Results A total of 444 patients were included in the study. Median follow-up time was 78 months. During the study period, 215 (48%) patients progressed to active MM, with a median TTP of 72 months. Cut-off points for BMPC, M-spike, and FLC ratio were determined with ROC curves to be 20%, 2 g/dL, and 18, respectively, for predicting high risk of progression. The following factors were associated with significantly increased risk of progression to active MM: BMPC >20%, M-spike >2g/dL, FLC ratio >18, immunoparesis with depression of 1 and 2 uninvolved immunoglobulins respectively, elevated lactate dehydrogenase, elevated beta-2-microglobulin, and low albumin (Table 1). In the multivariate model, BMPC >20% (HR 2.5, 95% CI 1.6-3.9), M-spike >2g/dL (HR 3.2, CI 1.9-5.5), FLC ratio >18 (HR 1.8, CI 1.1-3.0), albumin <3.5 g/dL (HR 3.9, CI 1.5-10.0), and immunoparesis with 2 uninvolved immunoglobulins (HR 2.3, CI 1.2-4.3), predicted a decreased TTP (Table 1). A total of 12 patients had 4 or 5 of the risk factors from the multivariate model, 8 of these did not meet the 2014 IMWG criteria for MM. These patients had a significantly shorter TTP than patients with less than 4 risk factors (median TTP 11 vs 74 months, p<0.0001, Figure 1). At 16 months, 82% of these patients had progressed, and within 2 years, 91% of the patients progressed. Only one patient remained progression free after 2 years, progressing at 31 months. Of patients with less than 4 risk factors, 19% progressed within the first 2 years. Conclusion In addition to baseline BMPC >20%, M-spike >2g/dL, FLC-ratio >18, we found that albumin <3.5g/dL and immunoparesis of both uninvolved immunoglobulins at the time of diagnosis with SMM were highly predictive of a decreased TTP to MM requiring therapy. These biomarkers are readily available and routinely assessed in clinic. Patients with 4 or 5 of these risk factors represent a new ultra-high risk group that progress to active disease within 2 years, further expanding on the definition of ultra-high risk SMM. In accordance with the rationale on ultra-high risk biomarkers as criteria established by the IMWG in 2014, such patients should be considered to have MM requiring therapy. Disclosures Korde: Amgen: Research Funding. Mailankody:Janssen: Research Funding; Takeda: Research Funding; Juno: Research Funding; Physician Education Resource: Honoraria. Lesokhin:Squibb: Consultancy, Honoraria; Serametrix, inc.: Patents & Royalties: Royalties; Takeda: Consultancy, Honoraria; Genentech: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Research Funding; Janssen: Research Funding. Hassoun:Oncopeptides AB: Research Funding. Smith:Celgene: Consultancy, Patents & Royalties: CAR T cell therapies for MM, Research Funding. Shah:Amgen: Research Funding; Janssen: Research Funding. Mezzi:Amgen: Employment, Equity Ownership. Khurana:Amgen: Employment, Equity Ownership. Braunlin:Amgen: Employment. Werther:Amgen: Employment, Equity Ownership. Landgren:Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Consultancy; Merck: Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Research Funding; Pfizer: Consultancy; Celgene: Consultancy, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 332-332
Author(s):  
Kai Neben ◽  
Henk M. Lokhorst ◽  
Anna Jauch ◽  
Uta Bertsch ◽  
Thomas Hielscher ◽  
...  

Abstract Abstract 332 PURPOSE : In Multiple Myeloma (MM), the combination of serum beta-2-microglobulin level with serum albumin concentration has been proposed as an outcome predictor in the International Staging System (ISS). More recently, subgroups of MM defined by genetic and cytogenetic abnormalities have been associated with unique biologic, clinical, and prognostic features. PATIENTS AND METHODS: We analyzed the prognostic value of 12 chromosomal abnormalities by fluorescent in situ hybridization (FISH) in a series of 354 MM patients treated within the HOVON-65/GMMG-HD4 trial. Patients with newly diagnosed MM were randomized to receive either three cycles of VAD (arm A; vincristine, adriamycin, dexamethasone) or PAD (arm B; bortezomib, adriamycin, dexamethasone). All patients underwent autologous stem cell transplantation (ASCT) followed by maintenance therapy with thalidomide 50 mg daily (arm A) or bortezomib 1.3 mg/m2 once every 2 weeks (arm B), respectively. In addition, a second cohort of patients was analyzed as a control group (n=462), undergoing ASCT at the University of Heidelberg between September 1994 and December 2010. RESULTS: For the entire group of patients treated within the HOVON-65/GMMG-HD4 trial, we identified 233 patients with 2 copies (67.7%), 95 patients with 3 copies (27.6%) and 16 patients (4.7%) with more than three copies of the chromosomal region 1q21. In addition to del(17p13) and t(4;14), we added +1q21 (>3 copies) to the group of high-risk aberrations, since the outcome of these patients was almost as poor as it was observed for patients with del(17p13). Subsequently, we analyzed whether combining the ISS score with information on the presence of high-risk aberrations could improve the prognostic value with regard to patients' outcome. A combination of the presence or absence of del(17p13), t(4;14), or +1q21 (>3 copies) with the ISS score allowed patients to be stratified into three distinct groups: low-risk [absence of del(17p13)/t(4;14)/+1q21 (>3 copies) and ISS I], high-risk [presence of del(17p13)/t(4;14)/+1q21 (>3 copies) and ISS II/III], and intermediate-risk (all remaining patients). Most of the patients belonged to the low- (33%) and intermediate-risk (49%) groups, whereas 18% were allocated to the high-risk group. The median PFS times for the low-, intermediate-, and high-risk groups were 41.9 months, 31.1 months (HR=1.7; p=0.0018) and 18.7 months (HR=3.6; p<0.0001), respectively. The 3yr-overall survival (OS) decreased from 94% in the low-risk group to 80% (HR=4.6; p=0.0001) and 43% (HR=12.8; p<0.0001) in the intermediate- and high-risk groups, respectively. These results were confirmed in the independent cohort of patients: From date of first ASCT, the median PFS times for the low-, intermediate-, and high-risk groups were 43.3 months, 23.0 months (HR=1.5; p=0.015) and 13.8 months (HR=2.4; p=0.0003), respectively. The 4yr-OS decreased from 84% in the low-risk group to 71% (HR=2.1; p=0.0043) and 49% (HR=3.84; p<0.0001) in the intermediate- and high-risk groups, respectively. CONCLUSION: In our series, the ISS/FISH-based score/algorithm predicted PFS and OS much better than the ISS alone. Our results with molecular cytogenetic techniques may already have implications for the risk-adapted clinical management of patients with MM particularly in younger patients. Disclosures: van de Velde: Ortho Biotech Oncology Research & Development: Employment. Sonneveld:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen-Cilag: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 955-955 ◽  
Author(s):  
Lisa Pleyer ◽  
Sonja Burgstaller ◽  
Reinhard Stauder ◽  
Michael Girschikofsky ◽  
Werner Linkesch ◽  
...  

Abstract Background Several studies, including retrospective analyses of patient registries1,2 and a subanalysis of the phase III MDS-AZA-001 trial3 suggest that poor-risk cytogenetics negatively impact overall survival (OS) in patients with myelodysplastic syndrome (MDS) and World Health Organization (WHO)-defined acute myeloid leukemia (AML) treated with azacitidine (AZA). There are few data available to indicate whether AZA has improved clinical activity vs conventional care in AML patients with adverse cytogenetics. However, in a subanalysis of MDS-AZA-001 (MDS and AML [20–30% bone marrow blasts]) patients with –7/–7q abnormalities had better OS with AZA than low-dose cytarabine (21.4 vs 3.5 months, respectively) supporting significant activity of AZA in patients with adverse cytogenetics.4 Methods In this retrospective study of the Austrian AZA Registry (N=346), we compared patients with WHO-AML and intermediate- (n=228) vs high-risk (n=74) cytogenetics according to Medical Research Council (MRC) criteria. Outcomes were also assessed with respect to AZA treatment line. Results The intermediate-risk cytogenetics group comprised 228 patients (AZA 1st line, n=109; AZA ≥2nd line, n=119), and the high-risk cytogenetics group comprised 74 patients (AZA 1st line, n=39; AZA ≥2nd line, n=35; Figure 1). Comparison of baseline characteristics of both groups revealed significant differences with regard to prevalence of males and Eastern Cooperative Oncology Group Performance Status (ECOG PS) >2 for patients with high-risk cytogenetics receiving AZA 1st line, but not in those receiving AZA ≥2nd line. Peripheral blood blasts were present in a significantly larger proportion of high- than intermediate-risk patients (Figure 1). In patients who received AZA 1st line, median number of AZA cycles was 6 for both the intermediate- and high-risk cytogenetic groups (range: 1–46 and 1–25, respectively). Median time from diagnosis to AZA start was <1 month for AZA 1st line and >7.6 months for AZA ≥2nd line. Median time from AZA stop to death was <2 months in all cohorts. In the whole cohort, the overall response rate (ORR) according to International Working Group (IWG) 2003 criteria5 was similar for patients with intermediate- and high-risk cytogenetics (complete response [CR] + CR with incomplete blood count recovery [CRi] + partial response [PR]: 32.0 vs 20.3%; p=0.106; Figure 1). Rates of hematologic improvement (HI) according to IWG 2006 criteria6 were also not significantly different (54.4 vs 75.6; p=0.063), and when ORR and HI were combined, the difference remained non-significant (47.4 vs 46.0%; p=0.885; Figure 1). Median OS was consistently higher in patients with intermediate- than high-risk cytogenetics (9.8 vs 5.4 months for the total cohort; p=0.046 [Figures 1 and 2a]; 13.5 vs 9.5 months for AZA 1st line [not significant]; and 7.6 vs 3.5 months for AZA ≥2nd line; p=0.005 [Figure 1]). However, median OS for responding patients (CR/CRi/PR/HI) was similar for patients with intermediate- and high-risk cytogenetics, irrespective of treatment line (19.9 vs 19.3 months for all responders; 20.5 vs 21.7 months for AZA 1st line; and 18.5 vs 15.0 months for AZA ≥2nd line). Furthermore, presence of a monosomal karyotype had a significant negative impact on OS (Figure 2b). None of the baseline factors analyzed had an impact on OS in patient subgroups with intermediate- or high-risk cytogenetics, except number of comorbidities >3. Conclusions Here, we compared outcomes of 302 WHO-AML patients with intermediate- vs high-risk cytogenetics treated with AZA. In line with recent data of MDS patients,1 baseline cytogenetics did not seem to have a significant effect on response to AZA. However, in agreement with other studies of AZA in MDS/WHO-AML patients,1–3 high-risk cytogenetics had a negative impact on survival compared with intermediate-risk cytogenetics in WHO-AML treated with AZA. 1. Sebert M, et al. Oral presentation at ASH 2013. Abstract 389 2. Thepot S, et al. Am J Hematol 2014;89:410–6 3. Fenaux P, et al. J Clin Oncol 2010;28:562–9 4. Fenaux P, et al. Br J Haematol 2010;149:244–9 5. Cheson BD, et al. J Clin Oncol 2003;21:4642–9 6. Cheson BD, et al. Blood 2006;108:419–25 Figure 1 Figure 1. Figure 2 Figure 2. Disclosures Pleyer: AOP Orphan Pharmaceuticals: Honoraria; Novartis: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria. Off Label Use: Vidaza (azacitidine) is indicated for the treatment of adult AML patients who are not eligible for haematopoietic stem cell transplantation with 20–30 % blasts and multi-lineage dysplasia, according to WHO classification. This cohort also includes AML-patients with >30% bone marrow blasts.. Burgstaller:AOP Orphan Pharmaceuticals: Honoraria; Novartis: Honoraria; Mundipharma: Honoraria; Celgene: Consultancy. Stauder:Novartis: Research Funding; Ratiopharm: Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding. Girschikofsky:Pfizer: Honoraria, Research Funding; Mundipharm: Consultancy, Honoraria. Pfeilstöcker:Janssen-Cilag: Honoraria; Novartis: Consultancy, Honoraria; Celgene: Consultancy, Honoraria. Lang:Celgene: Consultancy. Sperr:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Phadia: Research Funding. Valent:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Greil:Sanofi Aventis: Honoraria; Roche: Honoraria; Pfizer: Honoraria, Research Funding; Boehringer-Ingelheim: Honoraria; Astra-Zeneca: Honoraria; Novartis: Honoraria; Genentech: Honoraria, Research Funding; Janssen-Cilag: Honoraria; Merck: Honoraria; Mundipharma: Honoraria, Research Funding; Eisai: Honoraria; Amgen: Honoraria, Research Funding; Celgene: Consultancy, Research Funding; Cephalon: Consultancy, Honoraria, Research Funding; Bristol-Myers-Squibb: Consultancy, Honoraria; GSK: Research Funding; Ratiopharm: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document