scholarly journals Increasing CD28-FOXP3+CD8+ Treg and Senescent CD8+NK2GA+Eomes+ NK-like T Cells in Peripheral Blood of Patients with Multiple Myeloma

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1125-1125 ◽  
Author(s):  
Dimitri Kasakovski ◽  
Xiangbo Zeng ◽  
Ling Xu ◽  
Yangqiu Li

Abstract Immune dysfunction in patients with multiple myeloma (MM) includes TGF-β induced dendritic cell dysfunction, regulatory T cell (Tregs)/Th17 cell imbalance, accumulation of Tregs and myeloid derived suppressor cells. These tumor-induced dysfunctions may contribute to immune escape and even suppress immune cells introduced in adoptive cellular immunotherapy. CD28 independent T cells of the effector memory (TEM) and CD45RA+ effector memory (TEMRA) population were shown to accumulate with age and contribute to the immunosuppressive tumor microenvironment in several solid tumors and hematological cancers. Especially in the CD8+ population, the loss of CD28 is associated with high cytotoxicity and regulatory function while showing high diversity and defective antigen-induced proliferation. In the CD4 subset, regulatory and senescent T cells were studied extensively, while in the CD8 positive subset their heterogeneity is still not clearly defined. Their potential immunosuppressive role and distribution in healthy individuals (HI) as well as patients with multiple myeloma (MM) remains to be observed. Furthermore, a recently characterized CD8+CD28- NK-like T cell subset showing expression of NK-related inhibitory receptors and TCR independent effector function is potentially of interest in the progression of MM. In the present study, we compared the changes of distribution of CD8+CD25+ and CD8+FOXP3+ regulatory T cells (Treg), CD28-CD57+ senescent T cells (Tsen), and CD8+KIR/NK2GA+EOMES+ NK-like T in peripheral blood (PB) between HI and patients with MM by multicolour flow cytometry (Gating strategy shown in Figure 1A). When comparing 35 HIs (Median age is 54) and 14 MM patients (Median age is 52), it was shown that there is no significant change in the proportion of senescent T cells in CD8 (P = 0.2452), TEM/CD8 (P = 0.1686) and TEMRA/CD8 (P = 0.4861) between HIs and the MM group, while both the CD25+FOXP3+ regulatory T cells of the CD4 population (P = 0.0031) and CD28-FOXP3+ regulatory T cells of the CD8 population (P = 0.0014) were shown to increase. There is no significant difference in the percentages of KIR/NK2GA+EOMES+ in the CD8 T cell and TEMRA/CD8 T cell population between HIs and the MM group. Remarkably, although there was no overall increase in senescent T cell in MM patients, senescent CD8+NK2GA+EOMES+ NK-like T cells increased in MM patients in comparison to HIs (P = 0.0068) (Figure 1B). In conclusion, the increase of regulatory T cells of both the CD4 and CD8 population as well as the increase of senescent NK-like T cells in the CD8 population potentially contributes to cancer progression through creation of suppressive microenvironments. Moreover, we found that regulatory CD8 T cells and CD8 NK-like T cells only contribute to a small part of the overall CD28- senescent T cell pool. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1373-1373
Author(s):  
JianXiang Zou ◽  
Jeffrey S Painter ◽  
Fanqi Bai ◽  
Lubomir Sokol ◽  
Thomas P. Loughran ◽  
...  

Abstract Abstract 1373 Introduction: LGL leukemia is associated with cytopenias and expansion of clonally-derived mature cytotoxic CD8+ lymphocytes. The etiology of LGL leukemia is currently unknown, however, T cell activation, loss of lymph node homing receptor L-selectin (CD62L), and increased accumulation of T cells in the bone marrow may lead to suppressed blood cell production. The broad resistance to Fas (CD95) apoptotic signals has lead to the hypothesis that amplification of clonal cells occurs through apoptosis resistance. However, the proliferative history has not been carefully studied. To define possible mechanism of LGL leukemia expansion, T cell phenotype, proliferative history, and functional-related surface marker expression were analyzed. Methods: Peripheral blood mononuclear cells (PBMCs) were obtained from 16 LGL leukemia patients that met diagnostic criteria based on the presence of clonal aβ T cells and >300 cells/ml CD3+/CD57+ T cells in the peripheral blood. Samples were obtained from 10 age-matched healthy individuals from the Southwest Florida Blood Services for comparisons. Multi-analyte flow cytometry was conducted for expression of CD3, CD4/8, CD45RA, CD62L, CD27, CD28, CD25, CD127, IL15Ra, IL21a, CCR7 (all antibodies from BD Biosciences). The proliferative index was determined by Ki67 expression in fixed and permeabilized cells (BD Biosciences) and the proliferative history in vivo was assessed by T-cell-receptor excision circle (TREC) measurement using real-time quantitative PCR (qRT-PCR) in sorted CD4+ and CD8+ T cells. TRECs are episomal fragments generated during TCR gene rearrangements that fail to transfer to daughter cells and thus diminish with each population doubling that reflects the in vivo proliferative history. Results: Compared to healthy controls, significantly fewer CD8+ naïve cells (CD45RA+/CD62L+, 8.4 ± 10.8 vs 24.48 ± 11.99, p=0.003) and higher CD8+ terminal effector memory (TEM) T cells (CD45RA+/CD62L-, 67.74 ± 28.75 vs 39.33 ± 11.32, p=0.007) were observed in the peripheral blood. In contrast, the percentage of CD4+ naïve and memory cells (naïve, central memory, effector memory, and terminal effector memory based on CD45RA and CD62L expression) was similar in patients as compared to controls. The expression of CD27 (31.32 ± 34.64 vs 71.73 ± 20.63, p=0.003) and CD28 (31.38 ± 31.91 vs 70.02 ± 22.93, p=0.002) were lower in CD8+ T cell from patients with LGL leukemia and this reduction predominated within the TEM population (17.63±24.5 vs 70.98±22.5 for CD27, p<0.0001 and 13±20.5 vs 69.43± 21.59 for CD28, p<0.0001). Loss of these markers is consistent with prior antigen activation. There was no difference in CD25 (IL2Ra, p=0.2) expression on CD4+ or CD8+ T cells, but CD127 (IL7Ra, p=0.001), IL15Ra, and IL21Ra (p=0.15) were overexpressed in TEM CD8+ T cell in patients vs controls. All of these cytokine receptors belong to the IL2Rβg-common cytokine receptor superfamily that mediates homeostatic proliferation. In CD8+ T cells in patients, the IL-21Ra was also overexpressed in naïve, central and effector memory T cells. The topography of the expanded CD8+ T cell population was therefore consistent with overexpression of activation markers and proliferation-associated cytokine receptors. Therefore, we next analyzed Ki67 expression and TREC DNA copy number to quantify actively dividing cells and determine the proliferative history, respectively. We found that LGL leukemia patients have more actively dividing CD8+ TEM T cells compared to controls (3.2 ± 3.12 in patients vs 0.44 ± 0.44 in controls, p=0.001). Moreover, the TREC copy number in CD8+ T cells was statistically higher in healthy individuals after adjusting for age (177.54 ± 232 in patients vs 1015 ± 951 in controls, p=0.019). These results show that CD8+ cells in the peripheral compartment have undergone more population doublings in vivo compared to healthy donors. In contrast, the TREC copies in CD4+ T-cells were similar between LGL patients and controls (534.4 ± 644 in patients vs 348.78 ± 248.16 in controls, p>0.05) demonstrating selective cellular proliferation within the CD8 compartment. Conclusions: CD8+ T- cells are undergoing robust cellular activation, contraction in repertoire diversity, and enhanced endogenous proliferation in patients with LGL leukemia. Collectively, these results suggest that clonal expansion is at least partially mediated through autoproliferation in T-LGL leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3507-3507
Author(s):  
Oliver Goodyear ◽  
Karen Piper ◽  
Naeem Khan ◽  
Jane Starczynski ◽  
Prem Mahendra ◽  
...  

Abstract The expression of Cancer Germline Antigens (CGAgs) is normally restricted to the pre-meiotic spermatogonia cells of the testis. The testis is an immunologically privileged site and so immunological tolerance to CGAg is not established. However, CGAg expression is also detected in many types of malignant disease including plasma cells from patients with multiple myeloma. CGAg expression has been shown to prime a T cell immune response in many patients with solid tumours and this may offer a novel target for immunotherapy in patients with myeloma. We have used immunodominant peptide epitopes from a range of CGAgs to screen for CGAg-specific T cells in the blood of patients with multiple myeloma at various stages of their disease. Initial studies demonstrated that T cells from 15 out of 37 patients responded to one or more CGAg peptides and the magnitude of the CGAg-specific CD8+ T cell response ranged between 0.0004% and 0.1% of the total CD8+ T cell pool. Serial analysis showed that these immune responses were detectable in individual patients at multiple time-points during the course of their disease. A further 13 peptides have now been obtained including several CD4 peptide. We have subsequently cloned CD4 T cells specific to a MAGE 3 peptide and have shown them to be functional. In some patients we determined the membrane phenotype of the CGAg-reactive cells as CD45RA+ and CCR7−, an effector memory differentiation state. CGAg-specific responses have also been detected in patients with clinically benign forms of paraproteinaemia indicating that T cell immunity may play a role in the control of disease progression. Plasma cells are localised to bone marrow and we are now focussing on the study of immunity to CGAg at this site. Initial findings indicate a higher proportion of CGAg-specific T cells within bone marrow and the phenotypic profile of these cells is being determined. Functional T cells specific for CGAg are therefore present in a large proportion of patients with multiple myeloma and offer the possibility of a novel approach for immunotherapy in this disease.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 3940-3949 ◽  
Author(s):  
Marc Beyer ◽  
Matthias Kochanek ◽  
Thomas Giese ◽  
Elmar Endl ◽  
Martin R. Weihrauch ◽  
...  

In solid tumors, leukemias, and lymphomas, increased frequencies of functional CD4+CD25high regulatory T cells (Treg cells) have been previously demonstrated. In healthy individuals, Treg cells consist not only of memory but also of naive T cells, which can undergo peripheral expansion and are characterized by a relative enrichment for autoreactive T-cell receptors. Here, we demonstrate in patients with premalignant monoclonal gammopathy of undetermined significance and patients with multiple myeloma that functional FoxP3+ Treg cells of naive, central, and effector memory phenotype as determined by CCR7 and CD45RA expression are significantly expanded. Low frequencies of T-cell receptor excision circles in naive Treg cells in both healthy controls and multiple myeloma patients point to peripheral expansion as the prominent mechanism of increased frequencies of naive Treg cells in these cancer patients. These findings strongly suggest that the increase of functional Treg cells in cancer patients is a response to the process of malignant transformation.


2008 ◽  
Vol 180 (7) ◽  
pp. 5118-5129 ◽  
Author(s):  
Sven Mostböck ◽  
M. E. Christine Lutsiak ◽  
Diane E. Milenic ◽  
Kwamena Baidoo ◽  
Jeffrey Schlom ◽  
...  

2018 ◽  
Vol 64 (5) ◽  
pp. 113 ◽  
Author(s):  
Lai-quan Huang ◽  
Jian-xin Wang ◽  
Kun He ◽  
Yi-zhi Jiang ◽  
Zhong-ling Wei ◽  
...  

2019 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Alice Bayiyana ◽  
Samuel Okurut ◽  
Rose Nabatanzi ◽  
Godfrey Zziwa ◽  
David R. Boulware ◽  
...  

Despite improvement in the prognosis of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients on antiretroviral therapy (ART), cryptococcal meningitis (CM) still causes 10–15% mortality among HIV-infected patients. The immunological impact of ART on the CD4+ and CD8+ T cell repertoire during cryptococcal co-infection is unclear. We determined longitudinal phenotypic changes in T cell subsets among patients with CM after they initiated ART. We hypothesized that ART alters the clonotypic phenotype and structural composition of CD4+ and CD8+ T cells during CM co-infection. For this substudy, peripheral blood mononuclear cells (PBMC) were isolated at four time points from CM patients following ART initiation during the parent study (ClinicalTrials.gov number, NCT01075152). Phenotypic characterization of CD4+ and CD8+ T cells was done using T cell surface marker monoclonal antibodies by flow cytometry. There was variation in the expression of immunophenotypic markers defining central memory (CD27+CD45R0+), effector memory (CD45R0+CD27–), immune activation (CD38+ and Human Leucocyte Antigen DR (HLA-DR+), and exhaustion (Programmed cell death protein one (PD-1) in the CD4+ T cell subset. In comparison to the CD4+ T cell population, the CD8+ central memory subset declined gradually with minimal increase in the effector memory subset. Both CD4+ and CD8+ T cell immune exhaustion and activation markers remained elevated over 12 weeks. The relative surge and decline in the expression of T cell surface markers outlines a variation in the differentiation of CD4+ T cells during ART treatment during CM co-infection.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 245
Author(s):  
Daniil Shevyrev ◽  
Valeriy Tereshchenko ◽  
Elena Blinova ◽  
Nadezda Knauer ◽  
Ekaterina Pashkina ◽  
...  

Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Christoph Hess ◽  
Terry K. Means ◽  
Patrick Autissier ◽  
Tonia Woodberry ◽  
Marcus Altfeld ◽  
...  

CD8 T cells play a key role in host defense against intracellular pathogens. Efficient migration of these cells into sites of infection is therefore intimately linked to their effector function. The molecular mechanisms that control CD8 T-cell trafficking into sites of infection and inflammation are not well understood, but the chemokine/chemokine receptor system is thought to orchestrate this process. Here we systematically examined the chemokine receptor profile expressed on human CD8 T cells. Surprisingly, we found that CXC chemokine receptor 1 (CXCR1), the predominant neutrophil chemokine receptor, defined a novel interleukin-8/CXC ligand 8 (IL-8/CXCL8)–responsive CD8 T-cell subset that was enriched in perforin, granzyme B, and interferon-γ (IFNγ), and had high cytotoxic potential. CXCR1 expression was down-regulated by antigen stimulation both in vitro and in vivo, suggesting antigen-dependent shaping of the migratory characteristics of CD8 T cells. On virus-specific CD8 T cells from persons with a history of Epstein-Barr virus (EBV) and influenza infection, CXCR1 expression was restricted to terminally differentiated effector memory cells. In HIV-1 infection, CXCR1-expressing HIV-1–specific CD8 T cells were present only in persons who were able to control HIV-1 replication during structured treatment interruptions. Thus, CXCR1 identifies a subset of CD8 T cells poised for immediate cytotoxicity and early recruitment into sites of innate immune system activation.


Sign in / Sign up

Export Citation Format

Share Document