scholarly journals High Throughput Droplet Single-Cell Genotyping of Transcriptomes (GoT) Reveals the Cell Identity Dependency of the Transcriptional Output of Somatic Mutations

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 541-541
Author(s):  
Anna S Nam ◽  
Kyu-Tae Kim ◽  
Ronan Chaligne ◽  
Franco Izzo ◽  
Chelston Ang ◽  
...  

Abstract Somatic mutations in hematopoietic precursors underlie the development of myeloid disorders, such as myeloproliferative neoplasms (MPN). However, our ability to interrogate the transcriptional impact of these mutations on human hematopoiesis is limited by the frequent admixing of mutant (MUT) with wildtype (WT) cells or with other subclones. Recently, digital single-cell RNA-sequencing has provided high-resolution maps of normal hematopoiesis. Nonetheless, due to their 3' bias, these methods do not capture the cell's mutational status. Efficient linking of single-cell genotype and transcriptomes would allow direct comparison of WT and MUT progenitors within the same sample, eliminating patient-specific and technical confounders. Thus, we developed single-cell Genotyping of Transcriptomes (GoT) to link genotypes of expressed genes to transcriptional profiling of thousands of cells by adapting the 10x Genomics platform. We capture the target locus from cDNA generated at an intermediate step, thus enabling linkage of genotype to whole transcriptomes via shared barcodes (Fig. 1A). We tested this approach via a species-mixing experiment, whereby mouse cells with MUT CALR were mixed with human cells with WT CALR. GoT of 1291 admixed cells provided genotyping for 97.5% of cells, and 96.7% matched the expected species (Fig. 1B). To demonstrate the ability of this technology to probe hematopoietic differentiation in MPN, we applied GoT to 20,908 CD34+ cells across five patients with CALR-mutated essential thrombocythemia (ET) or myelofibrosis (MF), resulting in genotyping of 82% of cells. We first performed clustering agnostic to genotype, based on transcriptome data alone, and found that cells clustered according to progenitor cell identity, rather than mutational status (Fig. 1C). Furthermore, projection of GoT data demonstrated that MUT cells were present across all progenitor clusters (Fig. 1D). However, the frequency of CALR-mutated cells was higher in committed progenitors, especially megakaryocytic progenitors (MkPs) compared to CD34+, CD38- hematopoietic stem progenitor cells (HSCPs, Fig. 1E). Thus, CALR mutation may confer a greater fitness impact in lineage-committed cells vs. HSPCs. Indeed, we found a significant increase in the number of MkPs in cell cycle in MUT cells compared to WT cells (Fig. 1F). Moreover, this increase in cell cycle activity correlated with the platelet count (Fig. 1G). This suggests that interrogation of MUT and WT progenitors may inform our understanding of patient phenotypic variability despite shared genotypes. GoT enables de novo differential expression discovery in MUT vs. WT cells within the same progenitor subset. MUT MkPs upregulated genes in the unfolded protein response, such as PDIA6, HSPA5 and XBP1 (Fig. 1H), consistent with the central role of CALR as a chaperone protein. On the other hand, MUT HSPCs showed upregulation of the NF-kB pathway (Fig. 1I), most significantly in the subcluster enriched with the earliest HSCs (Fig. 1J). Since the NF-kB pathway has been implicated in HSC self-renewal, our data provides a potential mechanism for clonal expansion and maintenance of CALR-mutated HSCs. Collectively, these findings demonstrate that the transcriptomic output of CALR mutations is closely dependent on cell identity. To further evaluate the potential of GoT to detect multiple genotypes in clonally complex neoplasms, we targeted three genes, clonal SF3B1 (VAF 47.5% by bulk exon sequencing), and subclonal CALR (43.5%) and NFE2 (33%), in CD34+ cells from a patient with MF (Fig. 1K). Through GoT, the subclonal transcriptional output was interrogated; for example, CALR mutation conferred proliferative advantage to megakaryocytic-erythroid progenitors even in the presence of SF3B1 mutation, while additional NFE2 mutation did not further increase cell cycle activity. In summary, GoT is a powerful tool for linking transcriptional changes to somatic genotypes at the single-cell level. Specifically, it uncovered the transcriptional impact of mutations in myeloid clonal growths in the context of distinct progenitor identities. Further application of GoT to additional MPN contexts as well as clonal hematopoiesis is thus anticipated to provide critical insights into the transcriptional programs that enable clonal expansion and evolution in human hematopoiesis. Disclosures Hoffman: Merus: Research Funding; Janssen: Research Funding; Summer Road: Research Funding; Incyte: Research Funding; Formation Biologics: Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-28-SCI-28
Author(s):  
Dan A. Landau

Cancer progression, relapse and resistance are the result of an evolutionary optimization process. Vast intra-tumoral diversity provides the critical substrate for cancer to evolve and adapt to the selective pressures provided by effective therapy. Our previous work has shown that genetically distinct subpopulations compete and mold the genetic makeup of the malignancy (1, 2). Additionally, we have shown that epigenetic changes in cancer may be similar to the process of genetic diversification, in which stochastic trial and error leads to rare fitness enhancing events (3). These studies demonstrate the need to integrate genetic, epigenetic and transcriptional information in the study of cancer evolution, specifically at the single-cell resolution - the atomic unit of somatic evolution. To enable this work, we have developed a single-cell multi-omics toolkit, and apply it to chart the evolutionary history and developmental topographies of normal and malignant blood cells. First, we have applied single-cell multi-omics to chronic lymphocytic leukaemia (CLL), a highly informative model for cancer evolution (4). We applied multiplexed single-cell reduced-representation bisulfite sequencing to healthy B and CLL cells, and demonstrated that epimutations serve as a molecular clock. Heritable epimutation information therefore allows to infer high-resolution lineages with single-cell data, directly in patient samples. CLL tree topography showed earlier branching and longer branch lengths than normal B cell trees. These features reflect rapid drift after malignant transformation and CLL's greater proliferative history. Multi-omic single-cell Integration of methylome sequencing with whole transcriptome and genotyping capture validated tree topology inferred solely on the basis of epimutation information. To examine potential lineage biases during therapy, we profiled serial samples during ibrutinib-associated lymphocytosis, and identified clades of cells that were preferentially expelled from the lymph node after treatment, marked by distinct transcriptional profiles involving TLR pathway activation. The single-cell integration of genetic, epigenetic and transcriptional information thus charts the lineage history of CLL and its evolution with therapy. Second, charting the transcriptomes of clonally mutated cells is challenging in the absence of surface markers that distinguish cancer clones from one another, or from admixed non-neoplastic cells. To tackle this challenge, we developed Genotyping of Transcriptomes (GoT), a technology to integrate genotyping with high-throughput droplet-based single-cell RNA sequencing(5). With GoT we profiled thousands of CD34+ cells from patients myeloproliferative neoplasms to study how somatic mutations corrupt the process of human hematopoiesis. These data allow to superimpose the two differentiation trees; the native wildtype tree and the one corrupted by mutation. High-resolution mapping of malignant versus normal progenitors showed increased fitness with myeloid differentiation with CALR mutation. We identified the unfolded protein response as a predominant outcome of CALR mutations, with dependency on cell identity. Notably, stem cells and more differentiated progenitors show distinct transcriptional programs as a result of somatic mutation, suggesting differential sensitivity to therapeutic targeting. We further extended the GoT toolkit to genotype multiple targets and loci that are distant from transcript ends. Together, these findings reveal that the transcriptional output of somatic mutations in blood neoplasms is dependent on the native cell identity. Landau, D. A., Carter, S. L., Stojanov, P. et al., Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell152, 714-726 (2013).Landau, D. A., Tausch, E., Taylor-Weiner, A. N. et al., Mutations driving CLL and their evolution in progression and relapse. Nature526, 525-530 (2015).Landau, D. A., Clement, K., Ziller, M. J. et al., Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell26, 813-825 (2014).Gaiti, F., Chaligne, R., Gu, H. et al., Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature569, 576-580 (2019).Nam, A. S., Kim, K. T., Chaligne, R. et al., Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature571, 355-360 (2019). Disclosures Landau: Pharmacyclics: Research Funding; Celgene: Research Funding; Illumina Inc: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 559-559
Author(s):  
Ursula S.A. Stalmann ◽  
Fabio Ticconi ◽  
Ronghui Li ◽  
Aaron B. Wong ◽  
Glenn Cowley ◽  
...  

Hematopoietic Stem/Progenitor cells (HSPCs) with 5q haploinsufficiency in del(5q) myelodysplastic syndrome (MDS) acquire a clonal advantage in the bone marrow and out-compete normal hematopoiesis. A critical, yet unsolved question remains: how does genetic haploinsufficiency in del(5q) cells contribute to the clonal advantage of HSPCs? We investigated the role of haploinsufficiency for three candidate genes in the common deleted region on chromosome 5 (Csnk1a1, Egr1 and Apc) in direct competition with each other and wild-type (wt) cells on a single cell level by employing a novel lentiviral genetic barcoding strategy. We introduced genotype and cell-specific barcodes into HSPCs from murine models haploinsufficient for Csnk1a1, Egr1 or Apc. Barcoded HSPCs were sort-purified, genotypes mixed and subsequently competitively transplanted into lethally irradiated mice and re-transplanted after 16 weeks in a secondary transplant. The barcoded progeny was reliably recovered from peripheral blood and relative contribution of the barcoded clones to differentiated blood lineages was followed over 32 weeks. Despite heterogeneity in clonal evolution among the mice, all haploinsufficient clones had the potential to outcompete wt clones (3 of 5 mice in the primary transplant, 3 out of 4 mice in the secondary transplant). Csnk1a1 haploinsufficient clones showed the largest clonal abundance and clonal persistence. Expansion of oligoclonal Csnk1a1 haploinsufficient HSPCs was further enhanced in the secondary transplant in all mice. Egr1 haploinsufficient clones showed potential for prominent oligoclonal expansion in one mouse, but decreased in abundance in all secondary transplants. Apc haploinsufficient clones showed persistence but not expansion in 3 out of 5 mice. These results were validated by conventional competitive transplants, which demonstrated that Csnk1a1 and Egr1 haploinsufficient cells achieved the highest advantage over wt hematopoiesis in the primary transplant and more enhanced in the secondary transplant. Since Csnk1a1 regulates β-catenin protein stability, we hypothesized that the clonal expansion of Csnk1a1 haploinsufficient HSPCs is dependent on β-catenin levels. We performed a second genetic barcoding competitive transplant, comparing Csnk1a1-/+ HSPC directly to double haploinsufficient Csnk1a1-/+/Ctnnb1-/+ (β-catenin encoding) HSPCs. We included additional double haploinsufficient mutants Csnk1a1-/+/Apc-/+ and Csnk1a1-/+/Egr1-/+. Results showed pronounced expansion of Csnk1a1-/+ clones, while Csnk1a1-/+/Ctnnb1-/+ clones were outcompeted over time, suggesting that the advantage of Csnk1a1-/+ clones is β-catenin dependent. Csnk1a1-/+/Egr1-/+ and Csnk1a1-/+/Apc-/+ clones were less advantageous than Csnk1a1-/+ clones. To further investigate the mechanism of clonal fitness in Csnk1a1-/+ haploinsufficient HSPCs, we performed droplet based single cell RNA sequencing of Csnk1a1-/+ and wt Lin-Sca1+cKit+ (LSK) HSPCs. Csnk1a1 -/+ LSK were characterized by a higher fraction of cells expressing cell cycle genes compared to wt cells. In line, transcriptional alterations in the most primitive HSCs suggest that the clonal advantage is conveyed by canonical Wnt signaling activating downstream targets such E2F proteins. Csnk1a1-/+ haploinsufficient multipotent progenitors and myeloid/lymphoid primed progenitors expressed marked upregulation of metabolic pathways, mitochondrial respiration, cell cycle and differentiation, ubiquitination/proteasome system and deregulation of ribosome biogenesis. In conclusion, we demonstrate using a novel genetic barcoding approach in a competitive transplant setting that Csnk1a1-/+ haploinsufficient HSPCs have the potential for oligoclonal expansion and clonal persistence. Wnt/β-catenin signaling plays a central role in the clonal expansion. Interestingly, in Csnk1a1 haploinsufficiency the HSC state is preserved and the increased proliferation and metabolic activation are hallmark features of differentiating progenitor cells at MPP stage, increasing with cell cycle activation, thus ensuring clonal stability and preventing HSC exhaustion over time. Disclosures Brümmendorf: University Hospital of the RWTH Aachen: Employment; Janssen: Consultancy; Pfizer: Consultancy, Research Funding; Merck: Consultancy; Novartis: Consultancy, Research Funding; Ariad: Consultancy. Ebert:Celgene: Research Funding; Deerfield: Research Funding; Broad Institute: Other: Contributor to a patent filing on this technology that is held by the Broad Institute..


2018 ◽  
Author(s):  
Anna S. Nam ◽  
Kyu-Tae Kim ◽  
Ronan Chaligne ◽  
Franco Izzo ◽  
Chelston Ang ◽  
...  

AbstractDefining the transcriptomic identity of clonally related malignant cells is challenging in the absence of cell surface markers that distinguish cancer clones from one another or from admixed non-neoplastic cells. While single-cell methods have been devised to capture both the transcriptome and genotype, these methods are not compatible with droplet-based single-cell transcriptomics, limiting their throughput. To overcome this limitation, we present single-cell Genotyping of Transcriptomes (GoT), which integrates cDNA genotyping with high-throughput droplet-based single-cell RNA-seq. We further demonstrate that multiplexed GoT can interrogate multiple genotypes for distinguishing subclonal transcriptomic identity. We apply GoT to 26,039 CD34+ cells across six patients with myeloid neoplasms, in which the complex process of hematopoiesis is corrupted by CALR-mutated stem and progenitor cells. We define high-resolution maps of malignant versus normal hematopoietic progenitors, and show that while mutant cells are comingled with wildtype cells throughout the hematopoietic progenitor landscape, their frequency increases with differentiation. We identify the unfolded protein response as a predominant outcome of CALR mutations, with significant cell identity dependency. Furthermore, we identify that CALR mutations lead to NF-κB pathway upregulation specifically in uncommitted early stem cells. Collectively, GoT provides high-throughput linkage of single-cell genotypes with transcriptomes and reveals that the transcriptional output of somatic mutations is heavily dependent on the native cell identity.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 57-57
Author(s):  
Shira Rosenberg ◽  
Andrea Kubas-Meyer ◽  
Neelang Parghi ◽  
Nathaniel D. Omans ◽  
Neville Dusaj ◽  
...  

Abstract Interferon-alpha (IFN), the first approved immunotherapy for cancer, remains an effective therapy for patients with myeloproliferative neoplasms (MPN). The mechanisms of action of IFN on MPN cells are poorly understood, particularly in patients with CALR mutated (MUT) MPNs, who often exhibit clinical but not molecular responses. Previously, by developing Genotyping of Transcriptomes (GoT) that captures mutation status and single-cell RNA-seq (scRNA-seq) in high-throughput, we observed that CALR mutations led to cell identity-dependent effects on CD34 + cells, including a strong megakaryocytic progenitor (MkP) differentiation bias and fitness. We hypothesized that the IFN effects may be cell identity and mutation status dependent; thus we applied GoT to serial bone marrow aspirates (BM) from 5 patients with CALRmutated ET treated with pegylated-IFN-alfa2a who participated in MPD-RC-111/112 clinical trials. To capture the transcriptional impact of IFN, we removed experimental batch effects with Cell Hashing, in which CD34 + cells from serial BM were uniquely labeled and combined for the same GoT experiment (Fig. 1A). Cell clustering based on transcriptomic data alone revealed that the cells on active treatment clustered based on cell identity and IFN effects (Fig. 1B). When off therapy for 3 weeks, the strong transcriptional effects of IFN were largely lost (Fig. 1B). Next, we batch corrected and integrated across time points for each BM sample (Fig. 1C). We observed that IFN caused large shifts in the composition of wildtype (WT) and MUT cell subsets (Fig. 1D). IFN resulted in a dramatic expansion of WT lymphoid progenitors with a corresponding diminution of other progenitors (Fig. 1E). MUT cells at baseline were enriched for MkPs, compared to WT cells; after treatment, we observed an expansion of the immature myeloid (IMP) and neutrophil progenitors, with a less striking expansion of lymphoid progenitors (Fig. 1E). As IFN has been reported to induce cell cycling of murine hematopoietic progenitor cells, we examined whether a differential increase in proliferation by IFN underlies the differentiation shifts in WT and MUT cells. Cell cycle gene expression of ProB cells increased after treatment similarly in MUT and WT cells, while cell cycle expression of IMPs was increased to a greater extent in MUT cells (Fig. 1F), consistent with the differential shifts in populations. Next, we performed differential expression analysis between baseline and treated WT and MUT cells, respectively. We observed enrichment of the IFN pathways post-therapy, whereas TNF-a signaling was downregulated (Fig. 1G). Uniquely in the MUT cells, TGF-b signaling was downregulated, which may underlie improvements in marrow fibrosis following IFN therapy (Fig. 1G). Finally, as the differentiation biases of IFN persisted after discontinuation, we hypothesized that IFN results in chromatin remodeling of the earliest hematopoietic stem progenitor cells (HSPCs), with respect to transcription factor (TF) accessibility. We leveraged single nuclei chromatin accessibility (snATAC-seq) as a powerful measure of TF regulatory activities. We developed GoT-ATAC, an adaptation of the Multiome platform (10x Genomics), to capture snRNA-seq, snATAC-seq and somatic genotyping within the same cells in high-throughput (Fig. 1H). We applied GoT-ATAC to CD34 + cells from the same clinical trial cohorts (Fig. 1I, n = 3 patients: 3 baseline, 2 treated) and identified the expected enrichment of IRFs and STAT2 in treated HSPCs (Fig. 1J). Accessibility of BCL11A, critical for early lymphoid development, was increased in treated MUT and WT HSPCs. We also identified enhanced motif accessibility of PU.1 which can associate with IRF and is essential for myeloid and lymphoid differentiation. Uniquely within the treated MUT cells, we observed enhanced CEBPA motif enrichment, which regulates myeloid differentiation, together with PU.1. In conclusion, GoT revealed that IFN reshapes the differentiation landscape by promoting early lymphoid development and, uniquely in MUT cells, myeloid differentiation, providing a novel mechanism of actions underlying the effects of IFN in MPN patients. Downregulations of TNF-a and TGF-b signaling were other key molecular consequences of IFN. Lastly, GoT-ATAC demonstrated that IFN governs master regulators of hematopoietic differentiation as a function of the underlying mutational status. Figure 1 Figure 1. Disclosures Mimitou: Immunai: Current Employment. Smibert: Immunai: Current Employment. Hoffman: AbbVie Inc.: Other: Data Safety Monitoring Board, Research Funding; Novartis: Other: Data Safety Monitoring Board, Research Funding; Protagonist Therapeutics, Inc.: Consultancy; Kartos Therapeutics, Inc.: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1082-1082 ◽  
Author(s):  
Camelia Iancu-Rubin ◽  
Mosoyan Goar ◽  
Ronald Hoffman

Abstract Abstract 1082 Megakaryocyte (MK) development is characterized by polyploidization, cytoplasmic maturation and proplatelet formation, which culminates in the release of platelets into the circulation. The tumor suppressor p53 plays a critical role in the regulation of both cell cycle and apoptosis; its function is tightly controlled by the murine double minute (MDM2) protein which facilitates p53 degradation and inhibits p53 transcriptional activity. MK ploidy results from a disruption of normal cell cycle progression termed endomitosis while platelet release is believed to depend on apoptotic processes. The role of p53-MDM2 in MK in these two processes has not been clearly defined. A small molecule RG7112, which disrupts MDM2-p53 interaction, has shown promising anti-tumor effects in phase I clinical trials. This beneficial outcome has, however, been associated with the development of thrombocytopenia. We, therefore, used RG7112 as pharmacological probe to examine the effects of disruption of the MDM2-p53 regulatory loop on MK. We determined the effects of RG7112 on primary human MK by utilizing an in vitro system in which MK were generated from BM-derived CD34+ cells. We first demonstrated that both p53 and MDM2 transcripts are up-regulated as MK differentiation progresses. The ability of CD34+ cells to proliferate in the absence or presence of various concentrations of RG7112 was then evaluated both in liquid cultures and in CFU-MK colony assays. CD34+ cells exposed to 10 μM RG7112 for 7 days generated 70% fewer viable cells as compared to control cells exposed to the inactive form of the drug (p value = 0.0038). Furthermore, CD34+ cells treated with RG7112 formed up to 40% less CFU-MK colonies as compared to untreated cells. An assessment of apoptosis of MK precursors generated in the presence of RG7112 revealed that 69.5+2.1% were Annexin V positive as compared to 31.5+3.5% present in control cultures. These findings are consistent with the previously reported role of RG7112 in inducing p53 activation and apoptosis. Interestingly, phenotypical characterization of the viable cells generated under identical culture conditions, showed that RG7112 treatment did not interfere with the ability of CD34+ cells to acquire markers of MK differentiation during the first 7 days of culture since similar degrees of CD41 and CD42 expression were observed in the absence and in the presence of the drug. Likewise, exposure of MK precursors to the drug for 7 additional days (i.e. later stages of maturation) did not influence CD41 and CD42 expression. By contrast, cells differentiated in the presence of 5 μM RG7112 generated 50% fewer polyploid MK with greater than 4N DNA content as compared to those treated with the inactive form of the drug. Moreover, the negative effects on ploidy were associated with p53 activation, as assessed by the increased levels of p21 protein, a direct target of p53 which is known to limit polyploidization of primary MK. Finally, platelets generated in vitro were analyzed phenotypically and quantitated by dual labeling with anti-CD41 antibodies and thiazole orange (TO). The number of CD41+/TO+platelets derived from MK generated in the presence of RG7112 was reduced by 22% as compared to control. Based on these findings, we conclude that RG7112 impacts megakaryopoiesis by two potential mechanisms: 1) Impairing the ability of CD34+ cells to generate MK precursors due to increased apoptosis; 2) Limiting polyploidization during the late stages of development due to phamacological activation of p53. A combination of these two effects may provide an explanation for thrombocytopenia observed in patients receiving this drug and suggests that p53 plays an important role in normal human thrombocytopoiesis. Disclosures: Iancu-Rubin: Roche: Research Funding. Hoffman:Roche: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 373-373
Author(s):  
Linde A. Miles ◽  
Robert L. Bowman ◽  
Nicole Delgaudio ◽  
Troy Robinson ◽  
Martin P. Carroll ◽  
...  

Abstract Large scale molecular profiling studies in AML patients have suggested that stepwise acquisition of somatic mutations is crucial in driving leukemic development. High variant allele frequency (VAF) mutations in epigenetic modifier genes, such as TET2 and IDH1/2, are thought to occur early in AML pathogenesis while oncogenic mutations with typically lower VAF mutations, including FLT3 and NRAS, are suggested to occur late in disease evolution. While bulk DNA sequencing has catalogued co-mutations found in individual AMLs, it cannot unveil the heterogeneity and composition of clones that makes up the disease. Elucidating the architecture and clone-specific molecular profiles at the single cell resolution will be key to understanding how sequential and/or parallel mutation acquisition drives myeloid transformation. To assess the clonal architecture of AML, we previously performed single cell DNA sequencing (scDNA seq) in 146 patients with myeloid malignancies. We have further identified specific mutational combinations driving clonal expansion in TET2- or IDH1/2- mutant AML samples. These studies suggest TET2 and IDH1/2 can cooperate to promote clonal expansion with DNMT3A and NPM1 (Figure 1A). However, TET2 or IDH1/2 mutant clones that acquired KRAS mutations underwent minimal clonal expansion, suggesting mutant-pair specific fitness alterations (Figure 1B). To further identify how co-mutational pairing impacted clonal fitness and differentiation, we integrated the scDNA platform with immunophenotypic profiling of 45 cell surface markers and analyzed new TET2- and IDH1/2- mutant AML samples (Figure 1C). We identified clone-specific differences in lineage markers depending on co-mutational partners. NPM1 co-mutant clones were enriched for more primitive markers (CD33), whereas NRAS co-mutant clones possessed high expression of myeloid differentiation markers (CD14/CD11b), suggestive of clone-specific fitness landscapes across hematopoietic differentiation. We also identified divergent clonotype-immunophenotype patterns in TET2- and IDH2-mutant clones harboring NPM1/RAS mutations, suggesting that initiating mutations may prime mutant clones for very different evolutionary trajectories as they acquire similar mutations in leukemogenesis (Figure 1D). To deterministically delineate the relationship between clonal evolution and myeloid transformation, we generated Cre-inducible single (Tet2 -/-), double (Tet2 -/-/Nras G12Dand Tet2 -/-/Npm1 cA/wt), and triple (Tet2 -/-/Npm1 cA/wt/Nras G12D) mutant mice and evaluated differences in chimerism, immunophenotype, and survival. We observed a shortened survival for double and triple mutant mice, compared to Tet2 -/- only mice (Figure 1E). As previously reported, Tet2 -/-/Nras G12D mice developed a CMML-like phenotype. Critically, the addition of Npm1 resulted in a more rapid disease onset and transformation to AML (Figure 1F). Moreover, triple mutant WBM transplanted to form a fully penetrant disease into secondary recipients, while double mutant Tet2 -/-/Nras G12D WBM failed to form disease within 3 months of transplant, suggesting a difference in the cell population responsible for disease propagation. Immunophenotypic alterations were evident with Tet2 -/-/ Nras G12D displaying an increase in Mac1 +Gr1 + cells compared to Tet2 -/-/Npm1 cA/wt/Nras G12D mice which possessed increased Mac1 +Gr1 - cells and expansion of lineage negative cells (Figure 1G). These findings align with the clonotype specific expression patterns observed in clinical specimen and suggest that myeloid transformation and maturation biases are influenced by specific mutational combinations. Figure 1 Figure 1. Disclosures Miles: Mission Bio: Honoraria, Speakers Bureau. Bowman: Mission Bio: Honoraria, Speakers Bureau. Carroll: Janssen Pharmaceutical: Consultancy; Incyte Pharmaceuticals: Research Funding. Levine: Astellas: Consultancy; Janssen: Consultancy; Auron: Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria; QIAGEN: Membership on an entity's Board of Directors or advisory committees; Mission Bio: Membership on an entity's Board of Directors or advisory committees; Isoplexis: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Incyte: Consultancy; Imago: Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria, Research Funding; Prelude: Membership on an entity's Board of Directors or advisory committees; Ajax: Membership on an entity's Board of Directors or advisory committees; Zentalis: Membership on an entity's Board of Directors or advisory committees; Gilead: Honoraria; C4 Therapeutics: Membership on an entity's Board of Directors or advisory committees; Lilly: Honoraria; Morphosys: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1541-1541
Author(s):  
Mary T Scott ◽  
Wei Liu ◽  
Rebecca Mitchell ◽  
Cassie Clarke ◽  
Hassan Almasoudi ◽  
...  

Abstract Although it has been recognized for many years that cancer stem cells and embryonic stem cells (ESC) share molecular features, identifying ways to exploit this therapeutically has proved challenging. To date, these shared features have not been examined in the leukemic stem cells (LSC) found in patients with chronic myeloid leukemia (CML). By integrating known ES regulatory circuitry with transcriptomics datasets, including deep single-cell RNA-seq profiling of 15,670 LSC from five patients with CML, we identified a core ESC regulome in the LSC containing 1243 genes. The significant majority of this regulome (1102 genes) was up-regulated in cycling LSC, whilst quiescent LSC showed up-regulation of a characteristic set of 101 genes, unique to cells with high ESC identity and with regulatory circuitry enriched for c-Myc and Nanog modules. Membership of the ESC regulome included the TP53 gene which was transcriptionally repressed and detected at a lower frequency in quiescent LSC compared to cycling ones (11.8% vs 43.6%). We also demonstrated that tyrosine kinase inhibitors (TKI) repress the ESC regulome and TP53 expression in LSC, suggesting that the regulome safeguards against high levels of TP53 expression, thus promoting survival of quiescent LSC in the presence of TKI. We hypothesized that overcoming the influence of the regulome on TP53 expression would provide an opportunity to eradicate quiescent LSC. To this end, we used an MDM2 inhibitor (MDM2i), RG7388 (idasanutlin) or RG7112, to stabilize the p53 protein, examining its potential in combination with nilotinib (NIL) to eradicate CML LSC in vitro and in vivo, with RG7388 being the most optimized and furthest in development. The combination of NIL plus MDM2i in vitro was more effective at targeted LSC from primary patient samples than NIL treatment alone, as evidenced by reduced CFC and LTC-IC outputs (p<0.05, 0.01 respectively). Intriguingly, the combination of NIL plus MDM2i did not result in significant reductions in the number of LSC compared to NIL only, when we quantified them at the end of drug treatments in pre-clinical mouse models. Instead, we observed a functional decline of the LSC as evidenced by diminished engraftment potential in 2 o recipient mice (p<0.05; SCLtTA x BCR-ABL1 transgenic model) or diminished colony-plating potential (p<0.05). This was followed by near complete depletion of the LSC population (p<0.05) 28 days after cessation of combination drug treatment (patient-derived xenografts/PDX in immunocompromised mice). In order to understand the molecular events underpinning these drug effects on LSC, we performed RNA-seq analysis of drug-treated CD34 + cells in vitro (bulk cells), or of human CD34 + cells obtained from PDX (single cell RNA-seq). CD34 + cells treated with NIL plus MDM2i in vitro showed evidence of increased p53 stabilization and activation of p53 target genes, and this was accompanied by repression of the ESC regulome beyond that normally observed with NIL only. Similarly, in PDX we observed increased repression of the ESC regulome in human CD34 + cells exposed to the combination of NIL plus MDM2i that included repression of HIF1alpha and a signature of genes required for cellular adaptations to hypoxia, and growth factor-mediated resistance to TKI therapy. Further, single cell analysis of differentiated human CD45 + cells from our PDX model, provided compelling evidence that acquisition of this repressive signature in the LSC, through combined NIL plus MDM2i treatment, re-wires them towards a basophilic fate, consistent with functional exhaustion of the LSC compartment. In conclusion, we have identified an ESC regulome in CML LSC and demonstrate that a combination of a TKI plus an MDM2i leads to p53 upregulation which antagonizes this regulome, providing a highly effective strategy to target near complete loss of functional LSC in pre-clinical models. Our study has revealed a new therapeutic paradigm to examine in other cancer stem cell populations that utilize ESC regulatory programs. Disclosures Higgins: Roche/Genentech: Current Employment, Current equity holder in publicly-traded company. Copland: Astellas: Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau; Pfizer: Honoraria, Speakers Bureau; Incyte: Honoraria, Research Funding, Speakers Bureau; Cyclacel Ltd: Research Funding; Jazz: Honoraria, Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2404-2404
Author(s):  
Shouguo Gao ◽  
Zhijie Wu ◽  
Carrie Diamond ◽  
Bradley Arnold ◽  
Valentina Giudice ◽  
...  

Abstract Introduction . T-cell large granular lymphocytosis (T-LGL) is a low grade lymphoproliferative disorder, often clinically manifest as bone marrow failure. Treatment with immunosuppressive therapies is effective, but the dominant clone may persist even in responding patients. The pathogenesis of T-LGL has not been fully elucidated. In this study, we performed single cell RNA sequencing (sc-RNA seq) and V(D)J profiling to discern clonotypes and gene expression patterns of T lymphocytes from T-LGL patients who were sampled before and after treatment. Methods. Blood was obtained from patients participating in a phase 2 protocol of alemtuzumab as second line therapy (NCT00345345; Dumitriu B et al, Lancet Haematol 2016). Leukapheresis was performed in 13 patients (M/F 7/6; median age 51 years, range 26-85) before and after 3-6 months alemtuzumab administration and in 7 age-matched healthy donors. Cryopreserved blood was enriched for T cells with the EasySep Human T cell Isolation Kit (Stem cell). sc-RNA seq was performed on the 10XGenomics Chromium Single Cell V(D)J + 5' Gene Expression platform, and sequencing obtained on the HiSeq3000 Platform. Barcode assignment, alignment, unique molecular index counting and T cell receptor sequence assembly were performed using Cell Ranger 2.1.1. Results. Four hundred fifty thousand cells from 13 patients and 107,000 cells from 7 healthy donors were profiled. We measured productive TCR chains (which fully span the V and J regions, with a recognizable start codon in the V region and lacking a stop codon in the V-J region, thus potentially generating a protein). We detected at least one productive TCR α-chain in 50%, one productive TCR β-chain in 69% and paired productive αβ-chains in 47% of all cells. There was loss of TCR repertoire diversity in patients which was quantified by Simpson's diversity index; most patients showed oligoclonal or, less frequently, monoclonal expansion of the TCR repertoire (Fig. A). Regardless of clinical response, alemtuzumab treatment did not correct the low TCR repertoire diversity. TCR repertoires can be classified as "public", when they express identical TCR sequences across multiple individuals, or "private", when each individual displays distinct TCR clonotypes. No TCRA or TCRB CDR3 homology among patients was observed: most TCR clonotypes appeared to be private. Our data suggests that T-LGL is etiologically heterogenous disease, consistent with T cell expansion in response to a variety antigens, in diverse HLA contexts, or randomly. Despite differences of TCR among patients and healthy donors, and the presence of large clones in patients, distribution of TCR diversity followed the power law distribution in healthy donors and patients (Fig. B, showing the negative linear relationship between logarithmic expression of clone frequency and clone size). The observed distribution is consistent with a somatic evolution model, in which cell fitness depends on cellular receptor response to specific antigens and stimulation of cells by cytokine and other signals from the environment; fitted clones have higher birth-death ratios and thus expand (Desponds J et al, PNAS 2016). CD4 and CD8 T cells can be virtually separated by imputation from their transcriptomes (Fig. C). Comparison of gene expression between patients and healthy donors showed dysregulation of genes involved in pathways related to the immune response and cell apoptosis, consistent with a pathophysiology of T cell clonal expansion. We used diffusion mapping, which localizes datapoints to their eigen components in low-dimesional space, to characterize sources contributing to the gene expression phenotype: the first component was mainly from T cell activation and the second was associated with TCR expression. In LGL the T cell transcriptome appeared to be shaped by both lineage development and TCR rearrangement. Conclusion. We describe at the single cell level T clonal expansion profiles in T-LGL, pre- and post-treatment. Single cell analysis allows accurate recovery of paired α and β chains in the same cell and demonstrates a continuum of cell lineage differentiation. We found a range of differences in transcriptome and TCR repertoires across patients. Transcriptome data, coupled with detailed TCR-based lineage information, provides a rich resource for understanding of the pathology of T-LGL and has implications for prognosis, treatment, and monitoring in the clinic. Figure. Figure. Disclosures Young: GlaxoSmithKline: Research Funding; CRADA with Novartis: Research Funding; National Institute of Health: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2371-2371
Author(s):  
Hideki Makishima ◽  
Kenichi Yoshida ◽  
Michael J. Clemente ◽  
Masashi Sanada ◽  
Yasunobu Nagata ◽  
...  

Abstract Abstract 2371 PNH is a clonal stem cell disease. While nonmalignant, PNH shows certain similarities to MDS and other neoplasms affecting hematopoietic stem and progenitor cells, including persistence of an aberrant clone, clonal expansion, and phenotypic abnormalities. In a small proportion of patients, subtle chromosomal abnormalities can be found and cases of otherwise classical PNH due to microdeletions involving the PIG-A locus have been described, illustrating similarities to other malignant conditions. PIG-A gene mutations lead to defective biosynthesis of GPI anchors and are responsible for the PNH phenotype. Similarly, phenotypic features of stem cells affected by PIG-A mutations are believed to be responsible for the extrinsic growth advantage and clonal expansion in the context of immune mediated suppression of hematopoiesis. While this scenario is plausible, there are also observations suggesting that intrinsic factors may be also involved. For instance, PNH persists after successful immunosuppression, often for many years, suggesting activation of stem cell maintenance genes. Furthermore, PNH clones can also be encountered (albeit at a very low frequency) in healthy individuals, and PNH can present in a pure form without aplastic anemia. Such extrinsic factors may include additional, secondary genetic events such as somatic mutations. Supporting this theory, clonal rearrangement of chromosome 12, which leads to overexpression of the transcription factor HMGA2 gene, were found in cells with the PIG-A mutation from 2 PNH cases. Also, we recently reported 3 PNH cases with JAK2 V617F mutation, who presented with a MPN phenotype and thrombosis. We theorized that study of clonal architecture in PNH will reveal clues as to the pathogenesis of clonal evolution of the PNH stem cell. We applied next generation whole exome sequencing to detect somatic mutations in PNH cases (N=6). The subsequent validation set included 45 PNH cases. PNH and non-PNH cells were sorted using magnetic beads. DNA from both fractions was analyzed by whole exome sequencing and results of the non-PNH cells were subtracted from the results of the PNH clone. We found biallelic PIG-A mutations in 2 female cases and a single mutation in each male case. In an index female case with thrombosis, a novel somatic heterozygous mutation of NTNG1 (P24S) was detected, while the patient was negative for the JAK2 mutation. Allelic frequency with the NTNG1 mutation (53/160 sequence reads (33%)) was larger than that with a concomitant heterozygous PIG-A mutation (intron 5 splice donor site G<A) (78/333 reads (23%)). In this case, the size of the other heterozygous PIG-A mutation (G68E) was less (31/194 (16%)) than the other PNH clone. These findings suggest that there are 2 different PNH clones in one case and that the NTNG1 mutation might be acquired before PIG-A gene was mutated. Moreover, NTNG1 encodes a GPI-anchored cell membrane protein and the mutation (P24S) was located in the predicted signal peptide. All together, 3 novel mutations were discovered, including MAGEC1 (C747Y) and BRPF1 (N797S) mutations. Of note, BRPF1 mutations have been also reported in AML. Interestingly, BRPF1 encodes a component of MOZ/MORF complex, positively regulating the transcription of RUNX1. To screen pathogenic karyotypic lesions in PNH clonal expansions, we combined metaphase cytogenetics and single nucleotide polymorphism arrays. We detected 14 somatic chromosomal abnormalities in 13 out of 26 PNH cases (50%). Of note is that a microdeletion on 2q13 resulted in the loss of an apoptosis-inducing gene BCL2L11, suggesting a contribution to growth advantage. Somatic UPD lesions strongly suggest the presence of homozygous mutations, for example the SET nuclear oncogene, which is located in UPD9q32qter was observed in another PNH case. Overall, the discovery of these novel mutations, as well the previously described JAK2 mutation, indicates that the pathophysiology of PNH clonal evolution partially overlaps that of other myeloid malignancies. In sum, various novel somatic karyotypic abnormalities and mutations are frequently detected in PNH clones using technology with comprehensive and high resolution. Some of these aberrations play a similar role in the clonal evolution of myeloid malignancies. These results suggest new therapeutic strategies similar to those for other myeloid malignancies should be considered in PNH cases with addition mutations. Disclosures: Makishima: Scott Hamilton CARES Initiative: Research Funding. Maciejewski:NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2812-2812
Author(s):  
Melinda Varney ◽  
Andres Jerez ◽  
Jing Fang ◽  
David Miller ◽  
Lyndsey Bolanos ◽  
...  

Abstract Abstract 2812 Myelodysplastic syndromes (MDS) are hematologic disorders defined by blood cytopenias due to ineffective hematopoiesis, altered cytogenetics, and predisposition to acute myeloid leukemia (AML). The most common cytogenetic alteration in de novo and treatment-related MDS is deletion of chromosome 5q (del(5q)). There are two commonly deleted regions (CDR) mapped to chr 5q, however the gene(s) in these regions responsible for the manifestation of del(5q) MDS are not clearly defined. A search of annotated genes revealed that TRAF-interacting protein with forkhead-associated domain B (TIFAB), a known inhibitor of TRAF6 and a novel gene identified by an in silico search for TIFA-related genes, resides within the proximal CDR on band 5q31.1. We first determined whether TIFAB is expressed in normal hematopoietic stem/progenitor cell (HSPC) by qRT-PCR. We find that expression of TIFAB is enriched in human CD34+/CD38+ and mouse lineage-/cKit+ progenitors as compared to more differentiated populations, suggesting that it plays a role in normal HSPC function. To determine whether TIFAB is implicated in del(5q) MDS, we measured TIFAB expression in del(5q) MDS patients. According to a microarray analysis, TIFAB mRNA was significantly lower in CD34+cells isolated from MDS patients with del(5q) as compared with cells from MDS patients diploid at chr 5q (Pellagatti, et al., 2006). In an independent subset of patients, we confirmed that TIFAB expression was lower in marrow cells isolated from del(5q) MDS patients. Therefore, we hypothesize that TIFAB loss results in hematopoietic defects contributing to del(5q) MDS. To determine whether deletion of TIFAB affects hematopoiesis, we used lentiviral shRNAs to knockdown TIFAB mRNA in human cord blood CD34+ cells. To mimic haploinsufficiency of TIFAB in del(5q) MDS, we selected shRNAs that result in ∼50% knockdown of TIFAB mRNA and protein. Knockdown of TIFAB in human CD34+ cells results in increased survival, a competitive growth advantage, and altered hematopoietic progenitor function. Conversely, overexpression of TIFAB in human leukemia cell lines (THP1 and HL60) results in increased basal apoptosis, delayed G1/S-phase cell cycle progression, and impaired leukemic progenitor function in methylcellulose. Since TIFAB is predicted to regulate TRAF6, we examined the role of TIFAB on TRAF6 signaling. TIFAB suppressed TRAF6 lysine (K)-63 autoubiquitination (a measure of TRAF6 activity), and decreased total TRAF6 protein levels, suggesting that TIFAB may simultaneously inhibit TRAF6 function and protein expression. Consistent with this finding, TIFAB suppressed lipopolysaccharide-induced (TRAF6-dependent) NF-kB activation, but not TNF-induced (TRAF6-independent) NF-kB activation. TIFAB-mediated inhibition of TRAF6 also coincided with reduced phospho-IKK-beta (a measure of NF-kB activation) in leukemic cells. In summary, we have identified TIFAB as a novel del(5q) MDS/AML gene involved in regulating HSPC survival, progenitor function, and cell cycle. We propose that haploinsufficiency of TIFAB results in malignant clonal cell expansion and may contribute to the MDS/AML phenotype as a consequence of increased TRAF6-mediated activation of NF-kB. Disclosures: Maciejewski: NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document