scholarly journals A Unique Crosstalk between Tumor Cells and Hematopoietic Stem Cells Reveals a Myeloid Differentiation Pattern Signature Contributing to Metastasis

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2465-2465
Author(s):  
Ksenia Magidey ◽  
Ksenya Kveler ◽  
Rachelly Normand ◽  
Tongwu Zhang ◽  
Michael Timaner ◽  
...  

Metastasis is the major cause of death in cancer patients. Recent studies have demonstrated that the crosstalk between different host and tumor cells in the tumor microenvironment regulates tumor progression and metastasis. Specifically, immune cell myeloid skewing is a prominent promoter of metastasis. While previous studies have demonstrated that the recruitment of myeloid cells to tumors is a critical step in dictating tumor fate, the reservoir of these cells in the bone marrow (BM) compartment and their differentiation pattern has not been explored. Here we utilized a unique model system consisting of tumor cell clones with low and high metastatic potential (met-low and met-high, respectively) derived from melanoma and breast carcinoma cell lines. Hematopoietic stem cells (HSCs) and their early progenitor subset were defined as Lin-/Sca1+/CD117+, representing LSK cells. BM transplantation experiments using GFP-positive LSK cells derived from met-low and met-high tumor bearing mice were carried out to study lineage differentiation. The genetic signatures of LSK cells were analyzed by single cell RNA-sequencing (scRNA-seq). This analysis included unbiased automated annotation of individual cell types by correlating single-cell gene expression with reference transcriptomic data sets (SingleR algorithm) in order to evaluate the proportions of cell types in BM and reveal cell type-specific differentially expressed genes. Expression patterns of proteins originated from tumor cells were analyzed using a range of multi-omics techniques including nanostring, protein array, and mass spectrometry analysis. Tumor proteomic data was integrated with differential receptor expression patterns in BM cell types to reveal novel crosstalk between tumor cells and HSCs in the BM compartment. Mice bearing met-high tumors exhibited a significant increase in the percentage of LSK cells in the BM in comparison to tumor-free mice or mice bearing met-low tumors. These results were confirmed by functional CFU assays of peripheral blood of met-high compared to met-low tumor bearing mice. In addition, mice that underwent BM transplantation with GFP-positive LSK cells obtained from met-high inoculated donors exhibited an increased percentage of circulating GFP-positive myeloid cells in comparison to counterpart mice transplanted with LSK cells from met-low inoculated donors. Moreover, scRNA-seq analysis of LSK cells obtained from the BM of met-low and met-high tumor bearing mice revealed that met-high tumors induce the enrichment of monocyte-dendritic progenitor population (MDP), confirmed also by flow cytometry. To uncover the possible factors involved in myeloid programming of LSK cells, we performed a proteomic screen of tumor conditioned medium and integrated the results with the scRNA-seq data analysis. This analysis revealed that the IL-6-IL-6R axis is highly active in LSK-derived MDP cells from mice bearing met-high tumors. An adoptive transfer experiment using MDP-GFP+ cells obtained from BM of met-high tumor bearing mice demonstrated that met-high tumors directly dictate HSC fate decision towards myeloid bias, resulting in increased metastasis. Evidently, blocking IL-6 in mice bearing met-high tumors reduced the number of MDP cells, and consequently decreased metastasis. Our study reveals a unique crosstalk between tumor cells and HSCs. It provides new insight into the mechanism by which tumors contribute to the presence of supporting stroma. Specifically, tumors secreting IL-6 dictate a specific genetic signature in HSCs that programs them towards myeloid differentiation, thereby inducing a metastatic switch. Disclosures No relevant conflicts of interest to declare.

2017 ◽  
Vol 53 ◽  
pp. S109-S110
Author(s):  
Xiaofang Wang ◽  
Fang Dong ◽  
Sen Zhang ◽  
Wanzhu Yang ◽  
Zhao Wang ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3773-3773
Author(s):  
Meaghan Boileau ◽  
Selin Jessa ◽  
Samantha Worme ◽  
Damien Faury ◽  
Nada Jabado ◽  
...  

Acute myeloid leukemia (AML) develops in a step-wise manner from pre-leukemic clonal expansion to full-blown disease driven by aberrant epigenetic changes. Indeed, regulators of the epigenome such as DNMT3A, TET2, IDH1/2, EZH2 and ASXL1 are often mutated in pre-leukemia and myeloid malignancies. We and others identified K27M/I mutations in histone H3 in AML (Boileau et al. Nat Commun, 2019; Lehnertz et al. Blood, 2017). We demonstrated that K27 mutations are found in pre-leukemic hematopoietic stem cells (HSCs), are enriched in secondary AML, expand the functional human HSC pool and increase leukemic aggressiveness. Transcriptomic and epigenomic analysis determined that K27 mutations alter gene expression through a global decrease in promoter H3K27 tri-methylation and a gene-specific increase in H3K27 acetylation in leukemic cells (Boileau et al. Nat Commun, 2019). Here, we have analyzed the effects of the K27M mutation on HSCs at the single-cell level to understand its role in pre-leukemic clonal expansion. Healthy CD34+CD38- human cord blood cells were transduced with HIST1H3H WT or K27M and injected intrafemorally into sub-lethally irradiated NSG mice. After 14 weeks, bone marrow cells from the femur were collected and sorted for CD34+ transduced (GFP+) cells. Single-cell transcriptomics were performed by generating gene expression libraries from ~8,000 CD34+ cells using the 10X Genomics technology and sequenced using HiSeq4000. We have performed initial clustering and dimensionality reduction (t-SNE and UMAP) and identified 10 and 11 distinct clusters in the WT and K27M samples, respectively. Gene sets distinguishing the individual clusters have been determined. Using published gene lists for primitive hematopoietic cell types, the clusters have been assigned to specific cell types such as HSC, granulocyte-monocyte progenitors (GMP), common myeloid progenitors (CMP), multi-lymphoid progenitors (MLP) and megakaryocyte-erythroid progenitors (MEP) (Laurenti et al. Nat Immunol, 2013). Preliminary joint clustering analysis indicates the presence of two distinct clusters for the WT and K27M samples that were both assigned as "HSCs" in individual clustering. Further analysis to identify the differences in the clusters and cell populations between WT and K27M samples is being performed and will be presented at this meeting. Overall, this single-cell transcriptomic analysis will aid in determining the mechanism of action of the K27M mutant histone in pre-leukemic HSC clonal expansion. In addition, we will be performing similar single-cell analysis on HSCs expressing mutant ASXL1 as a comparison. Further understanding of the role of mutations in epigenetic regulators, such as histone H3 and ASXL1, in pre-leukemic clonal hematopoiesis will provide valuable insight on how to better prevent and treat AML and other myeloid malignancies. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiuran Zheng ◽  
Dan Zhang ◽  
Mengying Xu ◽  
Wanqin Zeng ◽  
Ran Zhou ◽  
...  

AbstractHematopoietic stem cells (HSCs) lie at the top of the differentiation hierarchy. Although HSC and their immediate downstream, multipotent progenitors (MPP) have full multilineage differentiation capacity, only long-term (LT-) HSC has the capacity of long-term self-renewal. The heterogeneity within the HSC population is gradually acknowledged with the development of single-cell RNA sequencing and lineage tracing technologies. Transcriptional and post-transcriptional regulations play important roles in controlling the differentiation and self-renewal capacity within HSC population. Here we report a dataset comprising short- and long-read RNA sequencing for mouse long- and short-term HSC and MPP at bulk and single-cell levels. We demonstrate that integrating short- and long-read sequencing can facilitate the identification and quantification of known and unannotated isoforms. Thus, this dataset provides a groundwork for comprehensive and comparative studies on transcriptional diversity and heterogeneity within different HSC cell types.


2021 ◽  
Vol 19 ◽  
pp. 5321-5332
Author(s):  
Julian D. Schwab ◽  
Nensi Ikonomi ◽  
Silke D. Werle ◽  
Felix M. Weidner ◽  
Hartmut Geiger ◽  
...  

Lab on a Chip ◽  
2009 ◽  
Vol 9 (18) ◽  
pp. 2659 ◽  
Author(s):  
Shannon L. Faley ◽  
Mhairi Copland ◽  
Donald Wlodkowic ◽  
Walter Kolch ◽  
Kevin T. Seale ◽  
...  

2020 ◽  
Author(s):  
Jicong Du ◽  
Penglin Xia ◽  
Yuan Gao ◽  
Ying Cheng ◽  
Ruling Liu ◽  
...  

Abstract Background: Hematopoiesis and the differentiation of HSC have been proved to not only play important roles in cancer progression but also be changed or reprogrammed by the tumor microenvironment itself. In this study, we investigated the changes of HSCs differentiation in advanced tumor-bearing mice. Methods: The tumor-bearing mice model was established by subcutaneously inoculating with xenografts of B16-F10 mouse melanoma cells into the right back of male wild-type C57BL/6 mice. Hematopoietic stem cells and multilineage differentiation were evaluated using blood routine, HE-staining, flow cytometry assay and HSCs culture techniques. Results: The multilineage differentiation of hematopoietic stem cells was reprogrammed in vivo . Especially, the differentiations of megakaryocyte and erythrocyte were blocked , while myeloid cell and lymphoid cell differentiation was encouraged in advanced tumor-bearing mice. Conclusion: In this study we showed the potential mechanism of hematopoietic disorder in tumor condition from a respective of hematopoietic stem cell and multilineage differentiation, which provided new knowledge regarding cachexia.


Stem Cells ◽  
2012 ◽  
Vol 30 (7) ◽  
pp. 1447-1454 ◽  
Author(s):  
Juan Du ◽  
Jinyong Wang ◽  
Guangyao Kong ◽  
Jing Jiang ◽  
Jingfang Zhang ◽  
...  

Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3758-3779 ◽  
Author(s):  
N Uchida ◽  
HL Aguila ◽  
WH Fleming ◽  
L Jerabek ◽  
IL Weissman

Abstract Hematopoietic stem cells (HSCs) are believed to play a critical role in the sustained repopulation of all blood cells after bone marrow transplantation (BMT). However, understanding the role of HSCs versus other hematopoietic cells in the quantitative reconstitution of various blood cell types has awaited methods to isolate HSCs. A candidate population of mouse HSCs, Thy-1.1lo Lin-Sca-1+ cells, was isolated several years ago and, recently, this population has been shown to be the only population of BM cells that contains HSCs in C57BL/Ka-Thy-1.1 mice. As few as 100 of these cells can radioprotect 95% to 100% of irradiated mice, resulting long-term multilineage reconstitution. In this study, we examined the reconstitution potential of irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ BM cells. Donor-derived peripheral blood (PB) white blood cells were detected as early as day 9 or 10 when 100 to 1,000 Thy-1.1lo Lin-Sca-1+ cells were used, with minor dose-dependent differences. The reappearance of platelets by day 14 and thereafter was also seen at all HSC doses (100 to 1,000 cells), with a slight dose-dependence. All studied HSC doses also allowed RBC levels to recover, although at the 100 cell dose a delay in hematocrit recovery was observed at day 14. When irradiated mice were transplanted with 500 Thy-1.1lo Lin-Sca-1+ cells compared with 1 x 10(6) BM cells (the equivalent amount of cells that contain 500 Thy-1.1lo Lin-Sca-1+ cells as well as progenitor and mature cells), very little difference in the kinetics of recovery of PB, white blood cells, platelets, and hematocrit was observed. Surprisingly, even when 200 Thy1.1lo Lin-Sca- 1+ cells were mixed with 4 x 10(5) Sca-1- BM cells in a competitive repopulation assay, most of the early (days 11 and 14) PB myeloid cells were derived from the HSC genotype, indicating the superiority of the Thy-1.1lo Lin-Sca-1+ cells over Sca-1- cells even in the early phases of myeloid reconstitution. Within the Thy-1.1lo Lin-Sca-1+ population, the Rhodamine 123 (Rh123)hi subset dominates in PB myeloid reconstitution at 10 to 14 days, only to be overtaken by the Rh123lo subset at 3 weeks and thereafter. These findings indicate that HSCs can account for the early phase of hematopoietic recovery, as well as sustained hematopoiesis, and raise questions about the role of non-HSC BM populations in the setting of BMT.


2012 ◽  
Vol 40 (2) ◽  
pp. 119-130.e9 ◽  
Author(s):  
Nico Scherf ◽  
Katja Franke ◽  
Ingmar Glauche ◽  
Ina Kurth ◽  
Martin Bornhäuser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document