scholarly journals A Phase IB Study of Blinatumomab (blina) in Patients with B Cell Acute Lymphoblastic Leukemia (ALL) and B-Cell Non-Hodgkin Lymphoma (NHL) As Post-Allogeneic Blood or Marrow Transplant (allo-BMT) Remission Maintenance

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 778-778
Author(s):  
Jonathan Webster ◽  
Richard F. Ambinder ◽  
Richard J. Jones ◽  
Nina D. Wagner-Johnston ◽  
Gabrielle T. Prince ◽  
...  

Background: AlloBMT can be curative as consolidation for high risk B ALL and NHL. However, long term survival is limited by transplant-related toxicity and particularly by disease relapse. Post-transplantation cyclophosphamide (PTCy) as graft-versus-host disease (GVHD) prophylaxis limits GVHD and facilitates the use of alternative allograft sources. Moreover, following PTCy, cellular immune reconstitution is favorable for the integration of strategies to augment anti-tumor immunity. Blina, a CD19/CD3 bispecific T cell engager antibody construct, is effective in the treatment of CD19+ ALL and NHL. Blina leads to T cell activation that may enhance established posttransplant tumor-specific T cell responses, leading to a more potent graft-versus-tumor effect. Thus, we have undertaken a phase Ib trial to assess the tolerability and preliminary efficacy of blina as post-alloBMT remission maintenance in B-cell ALL and NHL. Methods: Patients ³18 years-old with high risk CD19+ B ALL or NHL who underwent alloBMT using PTCy were eligible including those with prior blina exposure. Patients had to be 60-180 days from transplant with documented count recovery and no evidence of disease progression. Patients had to be off all post-transplant immunosuppression including steroids for the treatment of GVHD for ≥4 weeks prior to treatment initiation, and without a history of grade ≥3 acute GVHD or severe chronic GVHD. Patients could receive two cycles of blina if they had evidence of disease (including MRD) at their pre- and/or post-transplant evaluations but otherwise received only one cycle. Blina was given as a continuous infusion at 9 mcg/day on C1D1-7 and 28 mcg/day on C1D8-28 and C2D1-28. Results: As of July 23, 2019, 12 adults (10 males/2 females) have enrolled including 4 patients with B ALL and 8 patients with NHL. Among the B ALL patients, two with known TP53 mutations were transplanted in CR1, while two with relapsed disease were transplanted in CR3. Among the NHL patients, five had large cell transformation (3 from follicular and 2 from CLL); one had relapsed primary CNS lymphoma (PCNSL); one had relapsed mantle cell lymphoma (MCL); and one had diffuse large B cell lymphoma (DLBCL). The median age was 53 (range, 30-73). All patients underwent alloBMT using a conditioning regimen of fludarabine, cyclophosphamide, and total body irradiation (TBI). Eight patients received allografts from haploidentical donors, three from matched-unrelated donors, and one from a matched-related donor. Five patients received peripheral blood allografts, and seven bone marrow. Two patients were enrolled after a second alloBMT, and 3/4 ALL patients previously received blina. Baseline characteristics are presented in Figure 1. Patients started blina a median of 144 days post-transplant (range, 90-180). One patient stopped treatment on day 5 due to a grade 2 tremor, and one patient required dose reduction on day 25 due to grade 4 neutropenia. Toxicities were otherwise mild and are presented in Figure 2. There were no exacerbations of GVHD. At a median follow-up of 13.7 months after BMT (range 3.8-23 months), ten patients remain in remission, while one patient suffered a third CNS relapse of ALL at 20.6 months after his 2nd transplant and another had relapse of his transformed lymphoma. Data on biomarkers including changes in T cell subpopulations in both BM and PB, and co-signaling molecule expression will be presented. Conclusions: Post-alloBMT maintenance therapy with blina is feasible with minimal toxicity. 83% of the very high risk patients treated on study remain in CR at a median of 13.7 months post-transplant. Based on promising safety and efficacy data from the phase IB, the plan is to proceed to the phase II portion of the study. Disclosures Webster: Amgen: Consultancy; Genentech: Research Funding; Pfizer: Consultancy. Wagner-Johnston:Jannsen: Membership on an entity's Board of Directors or advisory committees; Bayer: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; ADC Therapeutics: Membership on an entity's Board of Directors or advisory committees. Luznik:Merck: Research Funding, Speakers Bureau; Genentech: Research Funding; AbbVie: Consultancy; WindMiL Therapeutics: Patents & Royalties: Patent holder. Gojo:Abbvie: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Merck: Research Funding; Jazz: Consultancy, Honoraria; Amgen Inc: Consultancy, Honoraria, Research Funding; Juno: Research Funding; Amphivena: Research Funding. OffLabel Disclosure: Blinatumomab is not labeled for use as post-transplant maintenance therapy or for use in the non-Hodgkin lymphoma.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4116-4116
Author(s):  
Anna Dodero ◽  
Anna Guidetti ◽  
Fabrizio Marino ◽  
Cristiana Carniti ◽  
Stefania Banfi ◽  
...  

Introduction: Diffuse Large B-Cell Lymphoma (DLBCL) is an heterogeneous disease: 30-40% of cases have high expression of MYC and BCL2 proteins (Dual Expressor, DE) and 5-10% have chromosomal rearrangements involving MYC, BCL2 and/or BCL6 (Double-/ Triple-Hit, DH/TH). Although the optimal treatment for those high-risk lymphomas remains undefined, DA-EPOCH-R produces durable remission with acceptable toxicity (Dunleauvy K, Lancet 2018). TP53 mutation is an independent marker of poor prognosis in patients (pts) with DLBCL treated with R-CHOP therapy. However, its prognostic value in poor prognosis lymphomas, receiving intensive therapy, has not been investigated yet. Methods: A series of consecutive pts (n=87) with biopsy proven diagnosis of DE DLBCL (MYC expression ≥40% and BCL2 expression ≥ 50% of tumor cells) or DE-Single Hit (DE-SH, i.e., DE-DLBCL with a single rearrangement of either MYC, BCL2 or BCL6 oncogenes) or DE-DH/TH (MYC, BCL2 and/or BCL6 rearrangements obtained by FISH) were treated with 6 cycles of DA-EPOCH-R and central nervous system (CNS) prophylaxis consisting of two courses of high-dose intravenous Methotrexate. Additional eligibility criteria included age ≥18 years and adequate organ functions. Cell of origin (COO) was defined according to Hans algorithm [germinal center B cell like (GCB) and non GCB)]. TP3 mutations were evaluated by next generation sequencing (NGS) based on AmpliseqTM technology or Sanger sequencing and considered positive when a variant allelic frequency ≥10% was detected. Results: Eighty-seven pts were included [n=36 DE only, n=32 DE-SH (n=8 MYC, n=10 BCL2, n=14 BCL6), n=19 DE-DH/TH] with 40 patients (46%) showing a non GCB COO. Pts had a median age of 59 years (range, 24-79 years). Seventy-three pts (84%) had advanced disease and 44 (50%) an high-intermediate/high-risk score as defined by International Prognostic Index (IPI). Only 8 of 87 pts (9%) were consolidated in first clinical remission with autologous stem cell transplantation following DA-EPOCH-R. After a median follow-up of 24 months, 73 are alive (84%) and 14 died [n=12 disease (n=2 CNS disease); n=1 pneumonia; n=1 suicide]. The 2-year PFS and OS were 71% (95%CI, 60-80%) and 76% (95%CI, 61%-85%) for the entire population. For those with IPI 3-5 the PFS and OS were not significant different for DE and DE-SH pts versus DE-DH/TH pts [64% vs 57% p=0.77); 78% vs 57% p=0.12)]. The COO did not influence the outcome for DE only and DE-SH [PFS: 78% vs 71% (p=0.71); 92% vs 86% (p=0.16) for GCB vs non -GCB, respectively]. Fourty-six pts (53%;n=18 DE only, n=18 DE-SH, n=10 DE-DH/TH ) were evaluated for TP53 mutations with 11 pts (24%) carrying a clonal mutation (n=6 in DE, n=3 in DE-SH, n=2 in DE-DH/TH). The 2-year PFS and OS did not significantly change for pts DE and DE-SH TP53 wild type as compared to DE and DE-SH mutated [PFS: 84 % vs 77%, (p=0.45); OS: 87% vs 88%, (p=0.92)]. The two pts DE-DH/TH with TP53 mutation are alive and in complete remission.Conclusions: High risk DLBCL pts treated with DA-EPOCH-R have a favourable outcome independently from high IPI score, DE-SH and DE-DH/TH. Also the presence of TP53 mutations does not negatively affect the outcome of pts treated with this intensive regimen. The efficacy of DA-EPOCH-R in overcoming poor prognostic genetic features in DLBCL should be confirmed in a larger prospective clinical trial. Disclosures Rossi: Daiichi-Sankyo: Consultancy; Roche: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Mundipharma: Honoraria; BMS: Honoraria; Sandoz: Honoraria. Carlo-Stella:Takeda: Other: Travel, accommodations; F. Hoffmann-La Roche Ltd: Honoraria, Other: Travel, accommodations, Research Funding; Rhizen Pharmaceuticals: Research Funding; Celgene: Research Funding; Amgen: Honoraria; AstraZeneca: Honoraria; Janssen Oncology: Honoraria; MSD: Honoraria; BMS: Honoraria; Genenta Science srl: Consultancy; Janssen: Other: Travel, accommodations; Servier: Consultancy, Honoraria, Other: Travel, accommodations; Sanofi: Consultancy, Research Funding; ADC Therapeutics: Consultancy, Other: Travel, accommodations, Research Funding; Novartis: Consultancy, Research Funding; Boehringer Ingelheim: Consultancy. Corradini:AbbVie: Consultancy, Honoraria, Other: Travel Costs; KiowaKirin: Honoraria; Gilead: Honoraria, Other: Travel Costs; Amgen: Honoraria; Celgene: Honoraria, Other: Travel Costs; Daiichi Sankyo: Honoraria; Janssen: Honoraria, Other: Travel Costs; Jazz Pharmaceutics: Honoraria; Kite: Honoraria; Novartis: Honoraria, Other: Travel Costs; Roche: Honoraria; Sanofi: Honoraria; Takeda: Honoraria, Other: Travel Costs; Servier: Honoraria; BMS: Other: Travel Costs.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4496-4496 ◽  
Author(s):  
Luke Eastburg ◽  
David A. Russler-Germain ◽  
Ramzi Abboud ◽  
Peter Westervelt ◽  
John F. DiPersio ◽  
...  

The use of post-transplant cyclophosphamide (PTCy) in the context of haploidentical stem cell transplant (haplo-SCT) has led to drastically reduced rates of Graft-vs-Host (GvH) disease through selective depletion of highly allo-reactive donor T-cells. Early trials utilized a reduced-intensity Flu/Cy/TBI preparative regimen and bone marrow grafts; however, relapse rates remained relatively high (Luznik et al. BBMT. 2008). This led to the increased use of myeloablative (MA) regimens for haplo-SCT, which have been associated with decreased relapse rates (Bashey et al. J Clin Oncol. 2013). Most studies have used a MA total body irradiation (TBI) based regimen for haplo-SCT. Preparative regimens using fludarabine and melphalan (FluMel), with or without thiotepa, ATG, and/or low dose TBI have also been reported using bone marrow grafts. Reports on the safety and toxicity of FluMel in the haplo-SCT setting with PTCy and peripheral blood stem cell (PBSC) grafts are lacking. In this two-center retrospective analysis, the safety/toxicity of FluMel as conditioning for haplo-SCT was evaluated. We report increased early mortality and toxicity using standard FluMel conditioning and PBSC grafts for patients undergoing haplo-SCT with PTCy. 38 patients at the University of Rochester Medical Center and the Washington University School of Medicine underwent haplo-SCT with FluMel conditioning and PBSC grafts between 2015-2019. Outcomes were measured by retrospective chart review through July 2019. 34 patients (89.5%) received FluMel(140 mg/m2). Two patients received FluMel(100 mg/m2) and two patients received FluMel(140 mg/m2) + ATG. The median age at time of haplo-SCT was 60 years (range 21-73). 20 patients were transplanted for AML, eight for MDS, two for PMF, two for NHL, and five for other malignancies. The median Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI) score was 4 (≥3 indicates high risk). 11 patients had a history of prior stem cell transplant, and 16 patients had active disease prior to their haplo-SCT. Seven patients had sex mismatch with their stem cell donor. Median donor age was 42 (range 21-71). 20 patient deaths occurred by July 2019 with a median follow up of 244 days for surviving patients. Nine patients died before day +100 (D100, "early mortality"), with a D100 non-relapse mortality (NRM) rate of 24%. Median overall and relapse free survival (OS and RFS, respectively) were 197 days (95% CI 142-not reached) and 180 days (95% CI 141-not reached), respectively, for the entire cohort. The 1 year OS and NRM were 29% and 50%. The incidence of grades 2-4cytokine release syndrome (CRS) was 66%, and 52% of these patients were treated with tocilizumab. CRS was strongly associated with early mortality, with D100 NRM of 36% in patients with grade 2-4 CRS compared to 0% in those with grade 0-1. The incidence of acute kidney injury (AKI) was 64% in patients with grade 2-4 CRS, and 8% in those without (p < 0.001). 28% of patients with AKI required dialysis. Grade 2-4 CRS was seen in 54% of patients in remission prior to haplo-SCT and in 92% of those with active disease (p = 0.02). Of the 9 patients with early mortality, 89% had AKI, 44% needed dialysis, and 100% had grade 2-4 CRS, compared to 31%, 10%, and 55% in those without early mortality (p = 0.002, p = 0.02, p = 0.01). Early mortality was not significantly associated with age, HCT-CI score, second transplant, disease status at transplant, total dose of melphalan, volume overload/diuretic use, or post-transplant infection. In conclusion, we observed a very high rate of NRM with FluMel conditioning and PBSC grafts for haplo-SCT with PTCy. The pattern of toxicity was strongly associated with grade 2-4 CRS, AKI, and need for dialysis. These complications may be mediated by excessive inflammation in the context of allo-reactive donor T-cell over-activation. Consistent with this, multiple groups have shown that FluMel conditioning in haplo-SCT is safe when using bone marrow or T-cell depleted grafts. Based on our institutional experiences, we would discourage the use of FluMel as conditioning for haplo-SCT with PTCy with T-cell replete PBSC grafts. Alternative regimens or variations on melphalan-based regimens, such as fractionated melphalan dosing or inclusion of TBI may improve outcomes but further study and randomized controlled trials are needed. This study is limited in its retrospective design and sample size. Figure Disclosures DiPersio: WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Karyopharm Therapeutics: Consultancy; Magenta Therapeutics: Equity Ownership; Celgene: Consultancy; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; NeoImmune Tech: Research Funding; Amphivena Therapeutics: Consultancy, Research Funding; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees. Liesveld:Onconova: Other: Data safety monitoring board; Abbvie: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1614-1614 ◽  
Author(s):  
Francine M. Foss ◽  
Kenneth R. Carson ◽  
Lauren Pinter-Brown ◽  
Steven M. Horwitz ◽  
Steven T. Rosen ◽  
...  

Abstract 1614 Background: Registries can be invaluable for describing patterns of care for a population of patients. COMPLETE is a registry of peripheral T-cell lymphoma (PTCL) patients designed to identify the lymphoma-directed treatments and supportive care measures that PTCL patients receive. We report here the first detailed findings of initial therapy. Methods: This is a prospective, longitudinal, observational registry that is led by a global steering committee. Patients with newly diagnosed PTCL and providing written informed consent are eligible. Patients are entered into the registry from time of initial diagnosis and followed for up to 5 years. Only locked records are reported. Results: As of July 2012, 330 patients have been enrolled from the United States. The first patient was enrolled in February 2010. Locked baseline and treatment records are available for 124 and 81 patients, respectively. Of the 124 patients with locked baseline records, 67 patients (54%) were male, the mean age was 59 (range: 19–89), and race/ethnicity was recorded as: White (87 patients; 70%), Black (19; 15%), Asian (5; 4%) and other/unknown (13; 11%). Histology was reported as follows: PTCL-not otherwise specified (27%), anaplastic large cell lymphoma-primary systemic type (18%), angioimmunoblastic T-cell lymphoma (17%), transformed mycosis fungoides (7%), T/NK-cell lymphoma-nasal and nasal type (6%), adult T-cell leukemia/lymphoma, HTLV 1+ (6%) and other (19%). 25 patients (20%) had received another diagnosis, including B-cell lymphoma, Hodgkin's disease and other T-cell lymphomas, prior to their current diagnosis of PTCL. 49 patients (40%) had B symptoms, 102 patients (82%) had an Ann Arbor stage of III/IV, 116 patients (94%) had ECOG performance status of 0–1, and international prognostic index (IPI) score was distributed as follows: IPI 0 (7% of patients), 1 (15%), 2 (43%), 3 (26%), and 4 (9%). Of the 81 patients with locked treatment records, details on initial treatment can be found in table below. Conclusions: This first detailed analysis of primary treatment of PTCL indicates that this disease is still largely being treated with regimens derived primarily from studies of B-cell lymphomas and that a single standard of care does not exist. The fact that a meaningful proportion of patients were initially diagnosed with something other than their current diagnosis of PTCL points out the challenges of diagnosing the disease. While the intent of initial treatment for most patients is to affect a cure, more than 20% of patients were noted as deceased at the end of initial treatment, underscoring the need for more effective, disease-specific therapy. Disclosures: Foss: Merck: Study Grant, Study Grant Other; Celgene: Study Grant, Study Grant Other; Eisai: Consultancy; Seattle Genetics: Consultancy; Celgene: Consultancy; Allos: Consultancy. Carson:Allos: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. Pinter-Brown:Allos: Consultancy, Membership on an entity's Board of Directors or advisory committees. Horwitz:Allos: Consultancy, Research Funding. Rosen:Allos: Consultancy, Honoraria. Pro:Celgene: Honoraria, Research Funding; Spectrum: Honoraria; Allos: Honoraria; Seattle Genetics: Research Funding. Gisselbrecht:Allos: Consultancy, Membership on an entity's Board of Directors or advisory committees. Hsi:Allos: Research Funding; Eli Lilly: Research Funding; Abbott: Research Funding; Cellerant Therapeutics: Research Funding; BD Biosciences: Research Funding; Millenium: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 623-623
Author(s):  
Bradley M. Haverkos ◽  
Onder Alpdogan ◽  
Robert Baiocchi ◽  
Jonathan E Brammer ◽  
Tatyana A. Feldman ◽  
...  

Abstract Introduction: EBV can be associated with several types of lymphomas, with reported frequencies of up to 8-10% in diffuse large B cell lymphoma (DLBCL), 30-100% in peripheral T cell lymphoma (PTCL) subtypes, 80% in post-transplant lymphoproliferative disease (PTLD), and 15-30% in classical Hodgkin lymphoma (HL), with adverse impact on outcomes. Nanatinostat (Nstat) is a Class-I selective oral HDAC inhibitor that induces the expression of the lytic BGLF4 EBV protein kinase in EBV + tumor cells, activating ganciclovir (GCV) via phosphorylation. This results in GCV-induced inhibition of viral and cellular DNA synthesis and apoptosis. Herein we report the final results from this exploratory study for patients with R/R EBV + lymphomas (NCT03397706). Methods: Patients aged ≥18 with histologically confirmed EBV + lymphomas (defined as any degree of EBER-ISH positivity), R/R to ≥1 prior systemic therapies with an absolute neutrophil count ≥1.0×10 9/L, platelet count ≥50×10 9/L, and no curative treatment options per investigator were enrolled into 5 dose escalation cohorts to determine the recommended phase 2 doses (RP2D) of Nstat + VGCV for phase 2 expansion. Phase 2 patients received the RP2D (Nstat 20 mg daily, 4 days per week + VGCV 900 mg orally daily) in 28-day cycles until disease progression or withdrawal. Primary endpoints were safety/RP2D (phase 1b) and overall response rate (ORR) (phase 2); secondary endpoints were pharmacokinetics, duration of response (DoR), time to response, progression free survival and overall survival. Responses were assessed using Lugano 2014 response criteria beginning at week 8. Results: As of 18 June 2021, 55 patients were enrolled (phase 1b: 25; phase 2: 30). Lymphoma subtypes were DLBCL (n=7), extranodal NK/T-cell (ENKTL) (n=9), PTCL, not otherwise specified (PTCL-NOS) (n=5), angioimmunoblastic T cell lymphoma (n=6), cutaneous T cell (n=1), HL (n=11), other B cell (n=3), and immunodeficiency-associated lymphoproliferative disorders (IA-LPD) (n=13), including PTLD (n=4), HIV-associated (n=5), and other [n=4: systemic lupus erythematosus (SLE) (n=2), common variable/primary immunodeficiency (n=2)]. Median age was 60 years (range 19-84), M/F 35/20, median number of prior therapies was 2 (range 1-11), 76% had ≥2 prior therapies, 78% were refractory to their most recent prior therapy, and 84% had exhausted standard therapies. EBER positivity ranged from &lt;1 to 90% in 42 tumor biopsies with central lab review. The most common treatment-emergent adverse events (TEAEs) of all grades were nausea (38%), neutropenia (34%), thrombocytopenia (34%), and constipation (31%). Grade 3/4 TEAEs in &gt;10% of patients included neutropenia (27%), thrombocytopenia (20%), anemia (20%), and lymphopenia (14%). Dose reductions and interruptions due to treatment-related AEs were reported in 14 (25%) and 16 (29%) patients, respectively. Only 1 patient had to discontinue therapy. There were no cases of CMV reactivation. For 43 evaluable patients (EBER-ISH + with ≥ 1 post-treatment response assessment) across all histologies, the investigator-assessed ORR and complete response (CR) rates were 40% (17/43) and 19% (8/43) respectively. Patients with T/NK-NHL (n=15; all refractory to their last therapy) had an ORR of 60% (n=9) with 27% (n=4) CRs. Two patients (ENKTL and PTCL-NOS) in PR and CR respectively were withdrawn at 6.7 and 6.6 months (m) respectively for autologous stem cell transplantation. For DLBCL (n=6), ORR/CR was 67%/33% (both CRs were in patients refractory to first-line R-CHOP). For IA-LPD (n=13), ORR/CR was 30%/20% (PTLD: 1 CR, other: 1 CR, 1 PR). For HL (n=10), there was 1 PR (4 SD). The median DoR for all responders was 10.4 m, with a median follow-up from response of 5.7 m (range 1.9-34.1 m). For the 17 responders, 8 lasted ≥ 6 months. Conclusions: The combination of Nstat and VGCV was well-tolerated with a manageable toxicity profile and shows promising efficacy in patients with R/R EBV + lymphomas, particularly in refractory T/NK-NHL, a heterogeneous group of aggressive lymphomas with dismal outcomes, with multiple durable responses. Further evaluation of this novel combination therapy for the treatment of recurrent EBV + lymphomas is ongoing in the phase 2 VT3996-202 trial. Disclosures Haverkos: Viracta Therapeutics, Inc.: Honoraria, Research Funding. Baiocchi: Prelude Therapeutics: Consultancy; viracta: Consultancy, Current holder of stock options in a privately-held company; Codiak Biosciences: Research Funding; Atara Biotherapeutics: Consultancy. Brammer: Seattle Genetics: Speakers Bureau; Celgene: Research Funding; Kymera Therapeutics: Consultancy. Feldman: Alexion, AstraZeneca Rare Disease: Honoraria, Other: Study investigator. Brem: Karyopharm: Membership on an entity's Board of Directors or advisory committees; SeaGen: Speakers Bureau; BeiGene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Bayer: Membership on an entity's Board of Directors or advisory committees; KiTE Pharma: Membership on an entity's Board of Directors or advisory committees; TG Therapeutics: Consultancy; ADC Therapeutics: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics/Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Morphosys/Incyte: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Scheinberg: Roche: Consultancy; Abbvie: Consultancy; BioCryst Pharmaceuticals: Consultancy; Alexion pharmaceuticals: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Speakers Bureau. Joffe: AstraZeneca: Consultancy; Epizyme: Consultancy. Katkov: Viracta Therapeutics, Inc.: Current Employment. McRae: Viracta Therapeutics, Inc.: Current Employment. Royston: Viracta Therapeutics, Inc.: Current Employment. Rojkjaer: Viracta Therapeutics, Inc.: Current Employment. Porcu: Viracta: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Innate Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BeiGene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Research Funding; Daiichi: Honoraria, Research Funding; Kiowa: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Spectrum: Consultancy; DrenBio: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1865-1865
Author(s):  
Cynthia L. Forsman ◽  
Reona Sakemura ◽  
Fabrice Lucien-Matteoni ◽  
Elizabeth Juarez-Diaz ◽  
Nan Yang ◽  
...  

Abstract Introduction: Unprecedented clinical outcomes were reported after CD19 chimeric antigen receptor T cell (CART19) therapy and led to their FDA approval in diffuse large B cell lymphoma and in acute lymphoblastic leukemia. However, the complete response rate in chronic lymphocytic leukemia (CLL) after CART19 therapy is much lower, at approximately 20-30%, and the mechanism(s) for this relative lack of success is unclear. The dominant known mechanism(s) that prevent successful CART cell therapy in CLL have been limited to CART expansion and poor persistence. However, potential mechanisms are not limited to the CLL T-cell. Several immune defects have been identified in CLL that result from the complex bi-directional interaction between B-CLL cells and their microenvironment. In CLL the leukemic microenvironment is rich with extracellular vesicles (EVs) secreted by B-CLL cells. There is growing evidence that these vesicles play an important role in intracellular communication by the delivery of growth factors, genetic material and microenvironmentally relevant molecules. Therefore, we aimed to investigate the role and interactions of EVs in the diminished or absent CART response seen in some CLL patients. Methods: EVs were isolated from peripheral blood of 16 patients with untreated CLL at different Rai stages (8 patients had early and 8 had advanced stage disease) and risk profile by FISH (8 patients had low risk and 8 patients had high risk disease, based on the presence of 17p deletion). Cytometry was used to determine size, number of particles per µl, Annexin V and CD19 expression. These variables were correlated to the Rai stage and risk category of the disease. To investigate the impact of EVs on CART cell functions, CART19 cells were stimulated with either CLL EVs alone or in combination with the CD19 positive cell line JeKo1. After coincubation different effector functions were analysed. Results: Two patterns of EVs in CLL patients were identified; a single versus two distinct EV size populations (small [EVssmall]; 50-240nm, median=110nm) and large [EVslarge]; 180-560nm, median = 360nm Fig 1.A). In 25% of patients, EVs were CD19 positive (EVCD19+). CD19 positivity was detected only in patients with the EVslarge (Fig 1.B). The EVs concentration, CD19 expression (EVsCD19+ vs EVsCD19-), or the size (EVssmall vs EVslarge) did not correlate with disease stage (early vs advanced Rai stage) or risk profile of CLL (low vs high risk) although some variation could be seen (Fig 1.C). To investigate our hypothesis that EVs could modulate CART19 function, CART19 cell effector functions were examined in the presence of EVsCD19+, EVsCD19-, EVssmall, or EVslarge. EVs, 1.5x10e5 particles, alone were insufficient to stimulate CART19 cells. However when CART19 cells were stimulated with the CD19 positive cell line JeKo1, their effector functions were reduced only in the presence of EVsCD19+, 50,000 particles, 2.5 x 10e3/ µl, but not EVsCD19- at the same concentration. This included a significant reduction in CART specific killing (Fig 1.D) and a reduction in cytokine production. The impairment of CART cell functions was independent of the size of EVs, i.e. there was no impairment of CART functions with large or small size EVCD19- in co-culture. Summary: We identify CD19 positive large size EVs from patients with CLL and demonstrate that these EVs play a role in the leukemic microenvironment by reducing CART cell activity. Studies are ongoing to define the mechanism(s). Disclosures Parikh: Janssen: Research Funding; AstraZeneca: Honoraria, Research Funding; Pharmacyclics: Honoraria, Research Funding; Gilead: Honoraria; MorphoSys: Research Funding; Abbvie: Honoraria, Research Funding. Kay:Cytomx Therapeutics: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta: Research Funding; Infinity Pharm: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Agios Pharm: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees. Kenderian:Tolero Pharmaceuticals: Research Funding; Humanigen: Research Funding; Novartis: Patents & Royalties.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3718-3718
Author(s):  
Francesca Arruga ◽  
Andrea Iannello ◽  
Nikolaos Ioannou ◽  
Alberto Maria Todesco ◽  
Marta Coscia ◽  
...  

Abstract BACKGROUND. T cell immunoreceptor with Ig and ITIM domains (TIGIT) is an inhibitory receptor expressed on T, NK and NKT cells, sharing structural and mechanistic similarities with PD-1 and CTLA-4. TIGIT competes with CD226, its partner receptor, for the binding to CD155 ligand: signaling triggered upon CD155 binding to CD226 potentiates T cell receptor (TCR) signaling and CD8 + T cell cytotoxicity against tumor cells (positive signaling). On the contrary, concomitant TIGIT expression on the cell surface prevents CD226 activation either by sequestering CD155 or by impeding CD226 homodimerization and phosphorylation (negative signaling). Recently, TIGIT was shown to be expressed on the surface of normal memory B cells, where it could directly act to suppress T cell responses. No data are available on TIGIT or CD226 expression by chronic lymphocytic leukemia (CLL) cells. AIM AND METHODS. Our aim was to investigate expression of the TIGIT and CD226 receptors and of the CD155 ligand in a cohort of clinically and molecularly annotated CLL patient samples. To this end, we designed a multiparametric panel of antibodies for flow cytometry and examined expression of the TIGIT/CD226/CD155 axis in peripheral blood mononuclear cells (PBMC) from our patient cohort. To investigate the impact of TIGIT/CD226 engagement on B cell responses, purified leukemic B cells were activated either through the B cell receptor (BCR) using an αIgM polyclonal antibody or with CpG oligonucleotide and interleukin 15 (IL-15) to induce proliferation. In selected experiments, we added recombinant human (Rh) TIGIT-Fc or CD155-Fc chimeras and αTIGIT or αCD226 blocking antibodies to interfere with this axis. RESULTS. Surface expression of TIGIT, CD226 and CD155 was evaluated in a cohort of 115 CLL samples and compared to age- and sex-matched healthy subjects. Both TIGIT and CD226 were upregulated on leukemic B cells compared to normal B lymphocytes, while CD155 was expressed at lower levels. A similar trend was observed on CD4 + and CD8 + T lymphocytes. High-risk CLLs (unmutated IgV genes, unfavorable cytogenetics and advanced stage) were predominantly TIGIT low and CD226 high, indicating an unbalance towards "positive signaling". Results were confirmed by confocal microscopy analyses on lymph node (LN) biopsies, which showed i) an overall higher TIGIT expression in CLL compared to reactive LNs and ii) among CLL LNs a stronger TIGIT positivity in mutated vs unmutated cases, confirming flow cytometry data. In line with these findings, Richter's syndrome samples and patient-derived xenografts models showed the lowest TIGIT and the highest CD226 levels. We next examined TIGIT axis expression during the follow up of CLL cases who underwent treatment with BTK inhibitor (BTKi). While CD226 levels remained unmodified upon treatment, a sharp decrease in surface TIGIT was detected soon after BTKi initiation. Since TIGIT acts by decreasing TCR signaling to shut down T cell responses, we hypothesized similar functions in B cells. By crosslinking the BCR with an αIgM antibody in a selected cohort of IGHV UM CLL cells, we found that BTK phosphorylation was induced to a lesser extent in TIGIT high compared to TIGIT low samples, suggesting that TIGIT is a marker of CLL cell anergy. Accordingly, interruption of receptors/ligand interactions with RhTIGIT-Fc chimera or with αTIGIT or αCD226 blocking antibodies, modulated BCR signaling capacity. Specifically, in TIGIT high samples, preventing receptor engagement by CD155 increased αIgM-induced BTK phosphorylation; in contrast, in TIGIT low samples, blocking CD155 interaction affected mostly CD226 signaling, thereby depotentiating BCR activation. Similar results were obtained when stimulating CLL cells with CpG/IL-15. Interestingly, we observed a significant upregulation of surface CD226 in CLL cells cultured for 6 days in the presence of CpG/IL-15. CONCLUSIONS. These results show for the first-time expression of TIGIT by CLL cells. Furthermore, they indicate that TIGIT is a marker of CLL cells anergy, whereas activated CLL cells express high levels of CD226. Inhibition of TIGIT binding to CD155 partially restores B cell signaling and activation. Future studies are needed to gain insights on the mechanisms behind its deregulation and to obtain a complete functional characterization of the axis. Disclosures Coscia: AbbVie: Honoraria, Other; Janssen: Honoraria, Other, Research Funding; AstraZeneca: Honoraria; Gilead: Honoraria. Gaidano: Abbvie: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Astrazeneca: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees; Incyte: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Allan: Genentech: Consultancy, Research Funding; Epizyme: Consultancy; Pharmacyclics LLC, an AbbVie Company: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Research Funding; AstraZeneca: Consultancy, Honoraria; BeiGene: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Celegene: Research Funding; AstraZeneca Pharmaceuticals LP, Genentech, a member of the Roche Group, Janssen Biotech Inc, TG Therapeutics Inc.: Research Funding; AbbVie Inc, AstraZeneca Pharmaceuticals LP, BeiGene, Janssen Biotech Inc, Pharmacyclics LLC: Consultancy; AbbVie Inc, Ascentage Pharma, Epizyme, Genentech, a member of the Roche Group, Janssen Biotech Inc, Pharmacyclics LLC: Other: Advisory Committee; TG Therapeutics: Research Funding. Furman: Oncotracker: Consultancy; Verastem: Consultancy; Abbvie: Consultancy, Honoraria, Other: Expert testimony; Sunesis: Consultancy; Incyte: Consultancy; Beigene: Consultancy; Acerta/AstraZeneca: Consultancy; Loxo Oncology: Consultancy; Genentech: Consultancy; Morphosys: Consultancy; Pharmacyclics: Consultancy; Sanofi: Consultancy; TG Therapeutics: Consultancy; X4 Pharmaceuticals: Consultancy; Janssen: Consultancy, Honoraria; AstraZeneca: Honoraria. Deaglio: Heidelberg Pharma: Research Funding; Astra Zeneca: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 197-197 ◽  
Author(s):  
Elise A. Chong ◽  
Bruce L Levine ◽  
Stephan A. Grupp ◽  
Megan Davis ◽  
Don L. Siegel ◽  
...  

Abstract Introduction: CTL019 is an anti-CD19 genetically modified autologous T-cell immunotherapy developed at the University of Pennsylvania (Penn) that was recently approved for treatment of relapsed/refractory pediatric and young adult B-cell acute lymphoblastic leukemia (ALL) and adult relapsed/refractory diffuse large B-cell lymphoma (DLBCL) as tisagenlecleucel (Novartis). For ALL, the FDA-approved dose is 0.2 to 5.0 x 106 CAR-positive viable T cells per kg of body weight for patients ≤ 50 kg or 0.1 to 2.5 x 108 CAR-positive viable T cells for pts > 50 kg; for DLBCL, the FDA-approved dose is 0.6 to 6.0 x 108 CAR-positive viable T cells. For CTL019 manufactured at Penn, the dose is determined by flow cytometric staining of CAR-positive T cells, which are cryopreserved in product bags along with replicate aliquots of the final formulation in vials, simultaneously cryopreserved for release testing. The CTL019 product release criteria include a post thaw viability assessment using a vial of replicate aliquot of the final formulation for Trypan blue exclusion or dual fluorescence automated cell counting (Luna-FL, Logos Biosystems). There are no published data examining the relationship between CTL019 viability release testing and clinical outcomes. Methods: We analyzed CTL019 post thaw viability release testing in patients treated on one prospective single institution clinical trial of CD19-expressing non-Hodgkin lymphomas (NHL) (NCT02030834) and two single-institution prospective pediatric ALL clinical trials (NCT01626495 and NCT02906371). Patients were assessed for response to therapy and CAR T-cell expansion. Receiver operating characteristic (ROC) curves were constructed for prediction of complete responses based on sensitivity and specificity of CAR T-cell product post thaw viability release test results. Results: 39 pts with relapsed/refractory NHL (24 diffuse large B-cell lymphoma and 15 follicular lymphoma) were enrolled and received the protocol-specified dose of CTL019. Best response rate was 56% (22/39) complete responses (CR). 123 pts with relapsed/refractory pediatric ALL were enrolled and received the protocol-specified dose of CTL019. Best response rate was 96% (118/123) CR/complete remission with incomplete blood count recovery (CRi). For patients with NHL infused with CTL019, product % viability had a median of 89.8% viability (range: 73.7%-97.7%); product % viability quintiles were as follows: 20%-tile=81.7%, 40%-tile=88.3%, 60%-tile=91.1%, 80%-tile=94.8%). ROC area for NHL patients was 0.47 (95%CI: 0.28-0.65). For patients with ALL infused with CTL019, product % viability had a median of 89.3% viability (range: 56.0%-98.4%); product % viability quintiles were as follows: 20%-tile=82.3%, 40%-tile=87.5%, 60%-tile=90.9%, 80%-tile=94.4%). ROC area for ALL patients was 0.52 (95%CI: 0.32-0.71). For patients with NHL, progression-free survival (PFS) was not significantly influenced by product viability release test results by Cox proportional hazards (HR: 1.0, 95%CI: 0.94-1.09, p=0.7). For patients with NHL, peak CAR T-cell expansion was not significantly correlated with product viability release test results (r2=0.12, p=0.5). Data collection for Cox analysis to investigate the effect of release test viability on PFS and correlation of release test viability with peak CTL019 expansion in ALL is ongoing and will be presented. Conclusions: Our data suggest that, within the ranges obtained in these trials, there is no clear dose-response relationship between CTL019 product viability release test results and clinical response rates in pediatric and young adult ALL or DLBCL. Figure Figure. Disclosures Chong: Novartis: Consultancy. Levine:Cure Genetics: Consultancy; Brammer Bio: Consultancy; CRC Oncology: Consultancy; Incysus: Consultancy; Novartis: Consultancy, Patents & Royalties, Research Funding; Tmunity Therapeutics: Equity Ownership, Research Funding. Grupp:Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Adaptimmune: Consultancy; University of Pennsylvania: Patents & Royalties; Jazz Pharmaceuticals: Consultancy. Davis:Novartis Institutes for Biomedical Research, Inc.: Patents & Royalties. Siegel:Novartis: Research Funding. Maude:Novartis Pharmaceuticals Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees. Frey:Novartis: Consultancy; Servier Consultancy: Consultancy. Porter:Genentech: Other: Spouse employment; Novartis: Other: Advisory board, Patents & Royalties, Research Funding; Kite Pharma: Other: Advisory board. June:Immune Design: Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Celldex: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Immune Design: Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding. Schuster:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Dava Oncology: Consultancy, Honoraria; Merck: Consultancy, Honoraria, Research Funding; Novartis Pharmaceuticals Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Nordic Nanovector: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Genentech: Honoraria, Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3949-3949
Author(s):  
David T Yeung ◽  
Matthew Greenwood ◽  
Jacqueline Rhen ◽  
Susan L Heatley ◽  
Barbara McClure ◽  
...  

Eighty-six newly diagnosed Philadelphia-negative ALL pts were enrolled from 2012 to 2018, from 14 Australian centres; 82 pts were evaluable. Pts were stratified and treated as per the pediatric ANZCHOG Study 8 protocol based on BFM 2000. Response was assessed on day 33 and 79 by morphology, flow cytometry and RQ-PCR measurable residual disease (MRD) at a central lab according to EuroMRD criteria. Allogenic stem cell transplantation was permitted for high and very high-risk disease groups. Detailed genomic analysis was performed in 47 pts (to date), using whole transcriptome sequencing (mRNA Seq) and multiplex ligation-dependent probe amplification (MLPA) for recurrent ALL related gene deletions. Median age of the study was 24 (16 - 38) years; 28% were female; 59/82 (72%) had B-ALL. Median follow up was 36 (range 3-73) months. Induction mortality was 3.6%. CR rate at day 33 was 90.4% and day 79 (time point 2, TP2) 97.6%. Relapse free survival (RFS) at 2 years was 75.6% (95%CI 65.6 - 85.5%). CR rates at day 33 and day 79 were 90.4% and 97.6% respectively. The 2-year overall survival (OS) was 79.3% (18/82 events). In concordance with other studies, TP2 MRD predicted outcome in ALL06. MRD positive (pos) pts had a 2yr RFS of 68%, vs 98% in MRD negative (neg) pts (p=0.003). To date, 47 pts had mRNA Seq & MLPA; 11/47 pts had T cell ALL; 1/47 died during induction (2.1%). The median age of this subset was 21 (15-37) years, 23% were female and the RFS at 2 years was 73.97% (95%CI 65.6 - 91.44%). TP2 MRD remained predictive of outcome in this group with 2-year RFS in MRD pos pts 54% vs 95% in MRD neg pts (p=0.013, n=44). 13/47 pts have died with a 2-year OS of 73% (95%CI 62.7 - 90%). MPLA and mRNA Seq analysed independently of outcome data revealed 28/47 pts had genomic lesions categorise as High Risk (HR). These included fusions and structural genomic abnormalities involving KMT2A, IKZF1, IGH, ABL1, JAK, CRLF2, CDKN2A/B, PAX5, RAS and ZNF384. The remaining cases were classified as Standard Risk (SR) and included mainly hyperdiploid, T cell and ETV6-RUNX1 cases. Eleven of 13 pts who relapsed were genomic HR with poorer 2-RFS vs SR (59% vs 78.8%, p=0.023 respectively) (Fig 1.). We examined the relationship between genomics risk group and TP2 MRD, a known prognostic marker. Of the 22 pts who were MRD pos, 19 (86%) pts were in the HR genomics group. In contrast, for MRD neg pts, 13/22 were in the SR group (59%) (p=0.004 Fishers exact, Table 1). This demonstrates that the TP2 MRD positive group is strongly enriched for pts with HR genomics. Pts with HR genomics who were TP2 MRD pos had a 2 year RFS of 27% vs HR MRD neg or SR pts with a 2 yr RFS of 78% (p=0.001)(Fig. 2). Further, of the 13 deaths that were observed in this subset 9/13 (69%) fell within the group of pts with HR genomics/TP2 MRD+. The single induction mortality, for whom TP2 data was not available was also genomic HR. This is one of the first genomic surveys in a cohort of AYA pts, a group known for their inferior outcomes compared to children, treated on a pediatric inspired ALL protocol. Our overall outcomes compare favourably to other cohorts (EHA 2019 abstract 2416). In ALL06, genomic risk stratification based on previous published HR lesions, identified a HR cohort with significantly lower RFS and trend for inferior OS, vs a SR cohort. HR genomics was also associated with significantly higher rates of TP2 MRD positivity. Elucidation of targetable genomic lesions at the time of diagnosis may allow interventions to minimise MRD positivity and relapse in HR pts. Genomic information also improves understanding of underlying disease biology, providing targets for novel treatment discovery. Disclosures Yeung: Pfizer: Honoraria; Amgen: Honoraria; Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding. Greenwood:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Wei:AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: AHW is a former employee of the Walter and Eliza Hall Institute and receives a fraction of its royalty stream related to venetoclax, Research Funding, Speakers Bureau; Astellas: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Macrogenics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity's Board of Directors or advisory committees; Servier: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Astra Zeneca: Honoraria, Research Funding; Janssen: Honoraria. White:AMGEN: Honoraria, Speakers Bureau; BMS: Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2147-2147
Author(s):  
M Hasib Sidiqi ◽  
Mohammed A Aljama ◽  
Angela Dispenzieri ◽  
Eli Muchtar ◽  
Francis K. Buadi ◽  
...  

Abstract We retrospectively reviewed all patients receiving bortezomib, lenalidomide and dexamethasone induction followed by autologous stem cell transplantation (ASCT) within 12 months of diagnosis for multiple myeloma at the Mayo Clinic. 243 patients treated between January 2010 and April of 2017 were included in the study. Median age was 61 (interquartile range, 55-67) with 62% of patients being male. High risk cytogenetic abnormalities (HRA) were present in 34% of patients. 166 (68%) patients received some form of maintenance/other therapy post transplant (no maintenance (NM, n=77), lenalidomide maintenance (LM, n=108), bortezomib maintenance (BM, n=39) and other therapy (OT, n=19)). Overall response rate was 99% with complete response (CR) rate of 42% and 62% at day 100 and time of best response post transplant respectively. The four cohorts categorized by post transplant therapy were well matched for age, gender and ISS stage. HRA were more common amongst patients receiving bortezomib maintenance or other therapy post transplant (NM 18% vs LM 22% vs BM 68% vs OT 79%, p<0.0001). Two year and five year overall survival rates were 90% and 67% respectively with an estimated median overall survival (OS) and progression free survival (PFS) of 96 months and 28 months respectively for the whole cohort. OS was not significantly different when stratified by post-transplant therapy (Median OS 96 months for NM vs not reached for LM vs 62 months for BM vs not reached for OT, p=0.61), however post-transplant therapy was predictive of PFS (median PFS 23 months for NM vs 34 months for LM vs 28 months for BM vs 76 months for OT, p=0.01). High risk cytogenetics was associated with a worse OS but not PFS when compared to patients with standard risk (median OS: not reached for standard risk vs 60 months for HRA, p=0.0006; median PFS: 27 months for standard risk vs 22 months for HRA, p=0.70). In patients that did not receive maintenance therapy presence of HRA was a strong predictor of OS and PFS (median OS: not reached for standard risk vs 36 months for HRA, p<0.0001; median PFS: 24 months for standard risk vs 7 months for HRA, p<0.0001). Patients receiving maintenance therapy appeared to have a similar PFS and OS irrespective of cytogenetics (median OS: not reached for standard risk vs 62 months for HRA, p=0.14; median PFS: 35 months for standard risk vs 34 months for HRA, p=0.79).On multivariable analysis ISS stage III and achieving CR/stringent CR predicted PFS whilst the only independent predictors of OS were presence of HRA and achieving CR/stringent CR. The combination of bortezomib, lenalidomide and dexamethasone followed by ASCT is a highly effective regimen producing deep and durable responses in many patients. Maintenance therapy in this cohort may overcome the poor prognostic impact of high risk cytogenetic abnormalities. Table Table. Disclosures Dispenzieri: Celgene, Takeda, Prothena, Jannsen, Pfizer, Alnylam, GSK: Research Funding. Lacy:Celgene: Research Funding. Dingli:Alexion Pharmaceuticals, Inc.: Other: Participates in the International PNH Registry (for Mayo Clinic, Rochester) for Alexion Pharmaceuticals, Inc.; Millennium Takeda: Research Funding; Millennium Takeda: Research Funding; Alexion Pharmaceuticals, Inc.: Other: Participates in the International PNH Registry (for Mayo Clinic, Rochester) for Alexion Pharmaceuticals, Inc.. Kapoor:Celgene: Research Funding; Takeda: Research Funding. Kumar:KITE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Gertz:Abbvie: Consultancy; Apellis: Consultancy; annexon: Consultancy; Medscape: Consultancy; celgene: Consultancy; Prothena: Honoraria; spectrum: Consultancy, Honoraria; Amgen: Consultancy; janssen: Consultancy; Ionis: Honoraria; Teva: Consultancy; Alnylam: Honoraria; Research to Practice: Consultancy; Physicians Education Resource: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 758-758 ◽  
Author(s):  
Pieternella Lugtenburg ◽  
Rogier Mous ◽  
Michael Roost Clausen ◽  
Martine E.D. Chamuleau ◽  
Peter Johnson ◽  
...  

Introduction: CD20-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the treatment of B-cell non-Hodgkin lymphomas (B-NHL); however, a significant proportion of patients (pts) present with refractory disease or will experience relapse. GEN3013 (DuoBody®-CD3×CD20) is the first subcutaneously administered IgG1 bispecific antibody (bsAb) that targets the T-cell surface antigen CD3 and the B-cell surface antigen CD20, triggering T-cell-mediated killing of B cells. In vitro, GEN3013 efficiently activates and induces cytotoxic activity of CD4+ and CD8+ T cells in the presence of B cells (Hiemstra et al. Blood 2018), and results in long-lasting depletion of B cells in cynomolgus monkeys. Subcutaneous (SC) GEN3013 in cynomolgus monkeys resulted in lower plasma cytokine levels, and similar bioavailability and B-cell depletion, compared with intravenous administration. GEN3013 has higher potency in vitro than most other CD3×CD20 bsAbs in clinical development (Hiemstra et al. HemaSphere 2019). SC GEN3013 in pts with B-NHL is being evaluated in a first-in-human, Phase 1/2 trial (NCT03625037), which comprises a dose-escalation part and a dose-expansion part. Here we report preliminary dose-escalation data. Methods: Pts with CD20+ B-NHL with relapsed, progressive, or refractory disease following anti-CD20 mAb treatment, and ECOG PS 0-2 were included. During dose escalation, pts received SC GEN3013 flat dose in 28-day cycles (q1w: cycle 1-2; q2w: cycle 3-6; q4w thereafter) until disease progression or unacceptable toxicity. Risk of cytokine release syndrome (CRS) was mitigated with the use of a priming dose and premedication with corticosteroids, antihistamines, and antipyretics. Primary endpoints were adverse events (AEs) and dose-limiting toxicities (DLTs). Secondary endpoints included pharmacokinetics (PK), immunogenicity (anti-drug antibodies [ADA]), pharmacodynamics (PD) (cytokine measures; laboratory parameters), and anti-tumor activity (tumor size reduction; objective and best response). Results: At data cut-off (June 28, 2019), 18 pts were enrolled into the dose-escalation part of the trial, with safety data available for pts receiving doses starting at 4 µg. Most pts had diffuse large B-cell lymphoma (DLBCL; n=14) and were heavily pre-treated; 10 pts had received ≥3 prior lines of therapy (overall median [range]: 3 [1-11]). The median age was 58.5 years (range: 21-80), and 13 pts were male. At a median follow-up of 1.9 months, pts received a median of 5 doses (range: 1-14); treatment is ongoing in 6 pts. Twelve pts discontinued treatment due to progressive disease. Six pts died (2 during treatment, 4 during survival follow-up), all due to disease progression and unrelated to treatment. The most common (n≥5) treatment-emergent AEs were pyrexia (n=8), local injection-site reactions (n=7), diarrhea (n=5), fatigue (n=5), and increased aspartate aminotransferase (n=5). The most common Grade (G) 3/4 AEs were anemia (n=3) and neutropenia (n=3). Despite increasing GEN3013 doses, all CRS events were non-severe (initial observation: 3/8 pts, G1: n=1, G2: n=2; following modification of premedication plan [corticosteroids for 3 days]: 6/10 pts, G1: n=4, G2: n=2). Increases in peripheral cytokine (IL6, IL8, IL10, IFNγ, TNFα) concentrations after GEN3013 dosing correlated with clinical symptoms of CRS in most pts. No pts had tumor lysis syndrome or neurological symptoms. No DLTs were observed. GEN3013 PK profiles reflect SC dosing; Cmax occurred 2-4 days after dosing. No ADAs were detected. PD effects following GEN3013 dosing were observed at dose levels as low as 40 µg and included rapid, complete depletion of circulating B cells (if present after prior anti-CD20 therapy) and peripheral T-cell activation and expansion. The first evidence of clinical activity was observed at a dose level of 120 µg, with complete metabolic response observed in a pt with DLBCL. Conclusions: Subcutaneously administered GEN3013, a potent CD3×CD20 bsAb, shows good tolerability and early evidence of clinical activity at low dose levels in heavily pretreated pts with relapsed or refractory B-NHL. All CRS events were non-severe and did not lead to discontinuation. No DLTs were observed. Dose escalation is ongoing; updated data will be presented. Dose expansion will begin upon determining the recommended Phase 2 dose (RP2D) (NCT03625037). Disclosures Lugtenburg: Janssen Cilag: Honoraria; Roche: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria; Servier: Consultancy, Honoraria, Research Funding; Genmab: Consultancy, Honoraria; BMS: Consultancy; Takeda: Consultancy, Honoraria, Research Funding. Mous:Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Sandoz: Honoraria; Roche: Honoraria; Abbvie: Honoraria; Takeda: Honoraria, Research Funding; Janssen Cilag: Consultancy, Honoraria; MSD: Honoraria; Gilead: Consultancy, Honoraria, Research Funding. Clausen:Abbvie: Other: Travel grant to attend ASH 2019. Johnson:Boehringer Ingelheim: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Honoraria; Epizyme: Honoraria, Research Funding; Incyte: Honoraria; Takeda: Honoraria; Genmab: Honoraria; Bristol-Myers Squibb: Honoraria; Kite: Honoraria; Novartis: Honoraria. Rule:Janssen: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria, Research Funding; Astra-Zeneca: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Pharmacyclics: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria; TG Therapeutics: Consultancy, Honoraria; Napp: Consultancy; Kite: Consultancy. Oliveri:Genmab: Employment, Equity Ownership. DeMarco:Genmab: Employment, Equity Ownership. Hiemstra:Genmab: Employment, Equity Ownership, Other: Warrants. Chen:Genmab: Employment. Azaryan:Genmab: Employment. Gupta:Genmab: Employment, Equity Ownership. Ahmadi:Genmab Inc: Employment, Other: stock and/or warrants. Hutchings:Incyte: Research Funding; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding; Genmab: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Janssen: Research Funding; Pfizer: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document