scholarly journals Platelet Dysfunction Detected Using Rotational Thromboelastometry (ROTEM) in Severely Thrombocytopenic Patients with a Bleeding Phenotype

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2357-2357 ◽  
Author(s):  
Philip Young-Ill Choi ◽  
Sarah Hicks ◽  
Elizabeth E. Gardiner ◽  
Philip Crispin ◽  
James Slade ◽  
...  

Background: Thrombocytopenia occurs reasonably frequently with the underlying causes being numerous and requiring time to delineate. Patients may present with active bleeding or low platelet counts may be detected incidentally. Treatments are varied, refractory cases are not uncommon, and in those who do respond, relapses occur. The clinician's principal concern is to limit the risk of a life-threatening hemorrhage, however, the platelet count is an unreliable predictor of bleeding risk. Adult patients presenting with platelet counts < 20 x 109/L present the greatest safety dilemma for clinicians. Previous studies using ROTEM in adult ITP patients with platelet counts < 60 x 109/L and paediatric cases with platelet counts < 30 x 109/L demonstrated that clot firmness parameters correlated with bleeding score1. Our aim, therefore, was to perform ROTEM analysis on patients with a platelet count <20 x 109/L and correlate with bleeding status. Methods: Patients referred to the Haematology Department of The Canberra Hospital with thrombocytopenia were consented to the study. Blood was collected into Na-citrate tubes and analysed within 4 hr of collection. Each patient had an EXTEM and FibTEM assay performed on a ROTEM Delta machine. The measurement of fibrinogen levels was commenced part-way through the study. Data was analysed using PRISM software. Results: Twenty-five blood samples were analysed from 21 patients (17 primary ITP, 2 secondary ITP, 1 AML, 1 sepsis), 7 samples were treatment naive. Platelet count ranged from 0-17 x 109/L (mean 7.1 +/- 5.7) Even in this severely thrombocytopenic cohort, platelet count was a poor predictor of bleeding risk, as was the fibrin clot amplitude measured with FibTEM. In comparison, the calculated value for platelet contribution to clot formation (EXTEM A10 minus FibTEM A10) plotted against the platelet count demonstrated that subjects with a bleeding phenotype had a reduced platelet contribution to clot formation in comparison to their non-bleeding counterparts (Figure). Conclusions: ROTEM has the capacity to detect platelet dysfunction associated with bleeding in severely thrombocytopenic patients. Further studies are underway to elucidate determinants of platelet dysfunction such as specific anti-glycoprotein antibodies that may inhibit platelet function. Reference #1: Lindsey A. Greene et al., British Journal of Haematology 166: 592-600 (2014) Figure Disclosures D'Rozario: Alexion: Honoraria, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1324-1324 ◽  
Author(s):  
Yoshiaki Tomiyama ◽  
Yoshitaka Miyakawa ◽  
Shinichiro Okamoto ◽  
Shinya Katsutani ◽  
Akiro Kimura ◽  
...  

Abstract Abstract 1324 Poster Board I-346 INTRODUCTION Eltrombopag (PROMACTA®, GlaxoSmithKline) is the first non peptide, oral thrombopoietin receptor agonist which promotes the differentiation and proliferation of megakaryocytes and increases platelet counts. This study is a randomized study comprising a double-blind (DB), placebo (PBO)-controlled phase, followed by an open-label (OL) phase in previously treated Japanese patients with chronic ITP and platelet counts <30Gi/L. Since eltrombopag exposure has been reported to be 70% higher in East Asian patients with ITP as compared to Caucasian patients and given the chronic nature of the disease state, the lower initial dose of 12.5mg/day was used in this study. METHODS In the DB phase, patients were randomized into one of two treatment groups to receive either an initial dose of 12.5mg of eltrombopag or matching PBO once daily. A dose increase was allowed at Day 22 based on individual platelet count. For each patient, primary data up to Week 6 were frozen and the treatment assignment was unblinded at Week 7 before entering into the OL phase. The primary endpoint of the DB phase was to compare the proportion of patients achieving a platelet count of ≥50Gi/L and ≤400Gi/L after 6 weeks of eltrombopag or PBO. All patients completing the DB phase progressed to the OL phase. In the OL phase, patients who had received eltrombopag during the DB phase continued to receive eltrombopag for up to 26 weeks with dosage (12.5, 25 or 50mg/day) based on the individual platelet count. Patients who had received PBO during the DB phase initiated treatment with 12.5mg of eltrombopag and received eltrombopag for 26 weeks with dosage (12.5, 25 or 50mg/day) based on the individual platelet count. The primary efficacy endpoint of the long-term OL phase was to assess the ability of eltrombopag to elevate and maintain platelet counts in a target range (50-400Gi/L) during 6 months of treatment. Bleeding symptoms were also assessed subjectively and objectively at each visit. Blood samples were collected to describe the PK profile of eltrombopag. RESULTS Of 23 patients randomized, 16 had undergone splenectomy, 17 had received H. pylori eradication and 19 were receiving concomitant ITP medication at baseline. DB Phase: 23 patients were randomized to receive 6 weeks of once daily eltrombopag (n=15) or matching PBO (n=8). By Week 3, 5 of 15 (33.3%) patients receiving 12.5mg eltrombopag achieved platelet counts >50Gi/L. Three of the responders had platelet counts ≥100Gi/L at Week 3. At the end of the Week 6, 9 of the 15 patients (60.0%) receiving eltrombopag were responders (platelet count 50-400Gi/L). Three of these patients were receiving 12.5mg and the remaining 6 were receiving 25mg. All PBO patients failed to achieve a response at any point during the 6 weeks. Long-term OL Phase: During the first 3 weeks when all patients received 12.5mg of eltrombopag, 21.7% of patients achieved a platelet response of ≥50Gi/L. From Day 22 onwards a greater proportion of patients (47.8-69.6%) achieved platelet counts within the target range of 50-400Gi/L. Over the initial 3 week period a gradual rise in median platelet counts was observed and a marked increase in the median platelet count was observed from Day 22. From Day 36 until Week 26 the median platelet count was consistently within the target range of 50-400Gi/L. Eltrombopag therapy was associated with a consistent reduction in the proportion of patients with bleeding. 36.8% (7/19) had a reduction in concomitant ITP medication (corticosteroids) during the 6 months. Adverse events (AE) were reported in 22 out of 23 patients throughout the study. Nasopharyngitis was the most common AE (43%). One patient receiving eltrombopag developed a serious AE (transient ischemic attack of mild severity, considered related to study medication by the investigator) on day 10 and was withdrawn from the study. The AEs were mostly mild to moderate. There was a linear relationship between eltrombopag dose and exposure. CONCLUSION Six month treatment of low dose eltrombopag with an initial dose of 12.5mg up to a maximum dose of 50mg increased platelet counts and reduced bleeding and the use of concomitant ITP medication in Japanese patients with refractory ITP. The higher eltrombopag exposure in Japanese patients than in Caucasian patients may explain the equivalent efficacy at lower dosages of eltrombopag. Eltrombopag was well-tolerated and is an important new treatment option for patients with chronic ITP. Disclosures Miyakawa: GlaxoSmithKline: Consultancy; Nissan Chemical Industries: Research Funding; Shionogi: Honoraria; Ono Pharmaceutical: Honoraria. Ikeda:Daiichi-Sankyo: Research Funding; Tanabe-Mitsubishi: Research Funding; Chugai: Research Funding; Bayer: Research Funding; Daiichi-Sankyo: Honoraria; Bayer: Honoraria; Sanofi-Aventis: Honoraria; Takeda: Honoraria; GlaxoSmithKline: Honoraria; Kaken: Honoraria; Sumitomo: Honoraria; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Boehringer: Membership on an entity's Board of Directors or advisory committees. Koh:GlaxoSmithKline: Employment. Katsura:GlaxoSmithKline: Employment. Kanakura:GlaxoSmithKline: Consultancy; Kyowa Hakko Kirin: Research Funding; GlaxoSmithKline: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3229-3229 ◽  
Author(s):  
Ivana N Micallef ◽  
Eric Jacobsen ◽  
Paul Shaughnessy ◽  
Sachin Marulkar ◽  
Purvi Mody ◽  
...  

Abstract Abstract 3229 Poster Board III-166 Introduction Low platelet count prior to mobilization is a significant predictive factor for mobilization failure in patients with non-Hodgkin's lymphoma (NHL) or Hodgkin's disease (HD) undergoing autologous hematopoietic stem cell (HSC) transplantation (auto-HSCT; Hosing C, et al, Am J Hematol. 2009). The purpose of this study is to assess the efficacy of HSC mobilization with plerixafor plus G-CSF in patients with concomitant thrombocytopenia undergoing auto-HSCT. Methods Patients who had failed successful HSC collection with any mobilization regimen were remobilized with plerixafor plus G-CSF as part of a compassionate use program (CUP). Mobilization failure was defined as the inability to collect 2 ×106 CD34+ cells/kg or inability to achieve a peripheral blood count of ≥10 CD34+ cells/μl without having undergone apheresis. As part of the CUP, G-CSF (10μg/kg) was administered subcutaneously (SC) every morning for 4 days. Plerixafor (0.24 mg/kg SC) was administered in the evening on Day 4, approximately 11 hours prior to the initiation of apheresis the following day. On Day 5, G-CSF was administered and apheresis was initiated. Plerixafor, G-CSF and apheresis were repeated daily until patients collected the minimum of 2 × 106 CD34+ cells/kg for auto-HSCT. Patients in the CUP with available data on pre-mobilization platelet counts were included in this analysis. While patients with a platelet count <85 × 109/L were excluded from the CUP, some patients received waivers and were included in this analysis. Efficacy of remobilization with plerixafor + G-CSF was evaluated in patients with platelet counts ≤ 100 × 109/L or ≤ 150 × 109/L. Results Of the 833 patients in the plerixafor CUP database, pre-mobilization platelet counts were available for 219 patients (NHL=115, MM=66, HD=20 and other=18.). Of these, 92 patients (NHL=49, MM=25, HD=8 and other=10) had pre-mobilization platelet counts ≤ 150 × 109/L; the median platelet count was 115 × 109/L (range, 50-150). The median age was 60 years (range 20-76) and 60.4% of the patients were male. Fifty-nine patients (64.1%) collected ≥2 × 109 CD34+ cells/kg and 13 patients (14.1%) achieved ≥5 × 106 CD34+ cells/kg. The median CD34+ cell yield was 2.56 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 68.5%. The median time to neutrophil and platelet engraftment was 12 days and 22 days, respectively. Similar results were obtained when efficacy of plerixafor + G-CSF was evaluated in 29 patients with platelet counts ≤ 100 × 109/L (NHL=12, MM=10, HD=3 and other=4). The median platelet count in these patients was 83 × 109/L (range, 50-100). The median age was 59 years (range 23-73) and 60.4% of the patients were male. The minimal and optimal cell dose was achieved in 19(65.5%) and 3(10.3%) patients, respectively. The median CD34+ cell yield was 2.92 × 106 CD34+ cells/kg. The proportion of patients proceeding to transplant was 62.1%. The median time to neutrophil and platelet engraftment was 12 days and 23 days, respectively. Conclusions For patients mobilized with G-CSF alone or chemotherapy ±G-CSF, a low platelet count prior to mobilization is a significant predictor of mobilization failure. These data demonstrate that in patients with thrombocytopenia who have failed prior mobilization attempts, remobilization with plerixafor plus G-CSF allows ∼65% of the patients to collect the minimal cell dose to proceed to transplantation. Thus, in patients predicted or proven to be poor mobilizers, addition of plerixafor may increase stem cell yields. Future studies should investigate the efficacy of plerixafor + G-CSF in front line mobilization in patients with low platelet counts prior to mobilization. Disclosures Micallef: Genzyme Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Jacobsen:Genzyme Corporation: Research Funding. Shaughnessy:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Marulkar:Genzyme Corporation: Employment, Equity Ownership. Mody:Genzyme Corporation: Employment, Equity Ownership. van Rhee:Genzyme Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 891-891 ◽  
Author(s):  
Ilene Ceil Weitz ◽  
Miguel A Sanz ◽  
David H. Henry ◽  
Martin Schipperus ◽  
Bertrand Godeau ◽  
...  

Abstract Abstract 891 Background: Chronic Immune thrombocytopenia (ITP) is characterized by low platelet counts and increased risk of bleeding. Rescue medications used to treat or prevent bleeding produce transient increases in platelet counts but may be associated with additional toxicities and costs. Romiplostim, approved for the treatment of adult chronic ITP, is a TPO mimetic peptibody protein that increases platelet production. Previously published data from phase 3 romiplostim trials showed that despite the increased use of rescue medication in the placebo arm, patient (pt) incidence of bleeding was reduced in the romiplostim arm vs placebo arm: 15% vs 34% (p = 0.02) for bleeding of grade ≥2 severity and 7% vs 12% (p=0.36) for grade ≥3 severity. Objective: To evaluate the effects of romiplostim treatment on bleeding outcomes in the phase 3 placebo controlled studies in chronic ITP pts with and without previous splenectomy. Bleeding events were captured as adverse events making it difficult to identify a single event reported multiple times versus persistent or recurrent bleeding. Further, we have developed a composite endpoint, termed bleeding-related episodes (BREs), which combines bleeding events and rescue medication administration to account for use of rescue medications to prevent bleeding. Methods: Adults with chronic ITP and a mean baseline platelet count <30 × 109/L were eligible. The previously published studies were conducted separately in splenectomized and nonsplenectomized populations. Pts were randomized (2:1) to receive romiplostim or placebo by subcutaneous injection once weekly for 24 weeks, with dose adjustments to maintain platelet counts between 50-200 × 109/L. Rescue medications were permitted to treat or prevent bleeding and included immunoglobulins, platelet transfusions, corticosteroids, or an increase in dose or frequency of a concurrent ITP medication. A BRE was defined as an actual bleeding event and/or the use of rescue medication. To collapse related events into episodes, events (bleeding events and/or the use of rescue medication) that occurred concurrently or within 3 days of each other were considered a single BRE. Bleeding events beginning 7 or more days after the start of the initial bleeding event were considered a new BRE. To account for differences in time spent on-study, rates of BRE per 100 pt-weeks were calculated. Results: A total of 125 pts (41 placebo, 84 romiplostim) were enrolled in the two studies. Baseline characteristics were well-balanced between the placebo and romiplostim-treated groups. During the treatment period, the rate of BREs was lower in the romiplostim group than in the placebo group, and results were consistent between splenectomized and nonsplenectomized pts (Table). Across both studies, the rate of BREs was reduced by 55% in pts receiving romiplostim compared to those receiving placebo (95% CI, 41% to 65%). BREs were more frequent at platelet counts <50 × 109/L (Table). BREs associated with hospitalizations were less common among romiplostim- than placebo-treated pts, and occurred at platelet counts <50 × 109/L in 10 of 11 cases. Corticosteroids (58 romiplostim, 38 placebo) and immunoglobulins (30 romiplostim, 73 placebo), were the most commonly used rescue medications and the rate of BREs including immunoglobulins was reduced by 88% in pts receiving romiplostim compared to placebo. Conclusions: In adults with chronic ITP, romiplostim was associated with a significant reduction in BREs compared to placebo. There was a marked reduction in BREs requiring immunoglobulins in the romiplostim arm compared to the placebo arm. Results were comparable in splenectomized and nonsplenectomized populations. The platelet count for a BRE starting ≥1 day after a platelet count measurement was calculated from the 2 proximal weekly measurements. Disclosures: Weitz: Amgen Inc.: Speakers Bureau. Sanz:Amgen Inc.: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Henry:Amgen Inc.: Research Funding, Speakers Bureau; Orthobiotech: Research Funding, Speakers Bureau; Watson Pharma: Research Funding, Speakers Bureau. Schipperus:Amgen Inc.: Membership on an entity's Board of Directors or advisory committees. Godeau:Amgen Inc.: Consultancy, Research Funding; Laboratoire Français de Fractionnement et de Biotechnologies (LFB): Consultancy; Roche: Research Funding. Gleeson:Amgen Inc.: Consultancy, Research Funding. Danese:Amgen Inc.: Consultancy, Research Funding. Deuson:Amgen Inc.: Employment, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3279-3279 ◽  
Author(s):  
Ann Janssens ◽  
Michael D. Tarantino ◽  
Robert Bird ◽  
Maria Gabriella Mazzucconi ◽  
Ralph Vincent V. Boccia ◽  
...  

Abstract Abstract 3279 Background: ITP is an autoimmune disorder characterized by increased platelet destruction and suboptimal platelet production. Romiplostim stimulates platelet production via the TPO-receptor, and is recommended for second- and third-line treatment of chronic ITP in adults. We report final data from a large prospective study of romiplostim in adults with ITP of varying duration and severity. Methods: Eligibility criteria were broad: patients ≥18 years of age, who had received prior ITP therapies (final protocol amendment: ≥1, previous amendments: ≥3), with low platelet counts (final amendment: ≤ 30 × 109/L, previous amendments: ≤ 10, ≤ 20 × 109/L) or experiencing uncontrolled bleeding. The only excluded comorbidities were: hematological malignancy, myeloproliferative neoplasms, MDS and bone marrow stem cell disorder. Romiplostim was initiated at 1 (final amendment) or 3 (previous amendments) μg/kg/week, with dose adjustments allowed to maintain platelet counts ≥50 × 109/L. Patients could continue on study until they had access to commercially available romiplostim. Rescue medications were allowed at any time; concurrent ITP therapies could be reduced when platelet counts were > 50 × 109/L. Primary endpoint was incidence of adverse events (AEs) and antibody formation. Secondary endpoint was platelet response, defined as either (1) doubling of baseline count and ≥ 50 × 109/L or (2) ≥20 × 109/L increase from baseline. Results: A total of 407 patients received romiplostim, 60% of whom were female. Median (Q1, Q3) time since ITP diagnosis was 4.25 (1.20, 11.40) years (maximum 57.1 years), with 51% of patients splenectomised and 39% receiving baseline concurrent ITP therapies. Seventy-one percent of patients completed the study, with requirement for alternative therapy and withdrawn consent the most common reasons for discontinuation (5% each). Median (Q1, Q3) on-study treatment duration was 44.29 (20.43, 65.86) weeks (maximum 201 weeks), with a total of 20,201 subject-weeks on study. Incidence and type of AEs were consistent with previous studies. The most common serious treatment-related AEs were cerebrovascular accident, headache, bone marrow reticulin fibrosis (with no evidence of positive trichrome staining for collagen and no evidence suggesting primary idiopathic myelofibrosis), nausea, deep vein thrombosis, hemorrhage and pulmonary embolism, with each reported in 2 of 407 (0.5%) patients. All other serious treatment-related AEs were each reported in one patient. Eighteen patients died; 3 deaths (hemolysis, intestinal ischaema, aplastic anemia) were considered treatment-related. No neutralizing antibodies to romiplostim or TPO were reported. Approximately 90% of patients achieved each of the platelet response definitions, regardless of splenectomy status. Overall, median (Q1, Q3) time to response was 2 (1, 4) weeks for response definition 1, and 1 (1, 3) week for response definition 2. Median (Q1, Q3) baseline platelet count was 14 (8, 21) × 109/L. After 1 week of treatment median (Q1, Q3) platelet count had increased to 42 (18, 101) × 109/L. From week 8 onwards, and excluding counts within 8 weeks of rescue medication use, median platelet counts were consistently above 100 × 109/L (range 101.0–269.5 × 109/L). Median (Q1, Q3) average weekly romiplostim dose was 3.62 (1.99, 6.08) μg/kg. Summary/conclusions: This is the largest prospective study in adult ITP reported to date. The data reported here are similar to those reported for previous romiplostim studies, with romiplostim able to safely induce a rapid platelet response in adult ITP patients with low platelet counts or bleeding symptoms. Romiplostim is an important, well-tolerated, treatment option for adult ITP patients, which significantly increases and maintains platelet counts. Adverse Event Subject Incidence Platelet Response Disclosures: Janssens: Amgen: Consultancy; Roche: Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Tarantino:Cangene corporation: Research Funding; Baxter: Research Funding; Talecris: Honoraria, Speakers Bureau; Up-to-date: Patents & Royalties; The Bleeding and Clotting Disorders Institute: Board Member. Bird:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; GSK: Membership on an entity's Board of Directors or advisory committees. Boccia:Amgen: Equity Ownership, Honoraria, Speakers Bureau. Lopez-Fernandez:Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Kozak:Amgen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Steurer:Amgen: Honoraria. Dillingham:Amgen Limited: Employment, Equity Ownership. Lizambri:Amgen: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3339-3339 ◽  
Author(s):  
Sophie Brigstocke ◽  
Catherine E. McGuinn ◽  
James B Bussel

Abstract Abstract 3339 Background: Children with ITP are at risk for bleeding. ITP is one of many conditions for which the American Academy of Pediatrics advises a pre-sports participation evaluation to assess the risk of injury (Rice 2008). However, restrictions in sports participation might deny the many evidence-based benefits of such physical activity usually accessible for US school-aged youth, thereby presenting significant health and quality of life issues. Aims: To better assess the frequency of sports participation and sports-related injury outcomes relative to contact level by gathering data via questionnaire from a convenience sample of children with persistent and chronic ITP. Methods: Fourteen different types of sports activities were included in this IRB-approved questionnaire and were classified as contact, limited contact, or non-contact as determined by the American Academy of Pediatrics Council on Sports Medicine and Fitness (Rice 2008). Questions were aimed at the frequency of sports participation, types of sports played, sports-related injuries (including bleeding), medical care required for injuries, and comfort regarding continued participation in a sport after sustaining an injury. For each sport not played, questions assessed reasons for the subject's decision to refrain from participation. Patients were categorized according to their platelet levels: counts ≤ 50, 50–150, >150; counts ≤ or >50; counts ≤ or >30 (×109/L). Proportions of data involving 2 groups were compared in a contingency table using Fisher's exact test with trends ≤ 0.01 and significance ≤ 0.025. Results: Twelve subjects (19%) did not participate in any sports. Thirty-six (56%), including patients across all platelet counts, participated in at least one contact sport. There was no statistically significant association (p > 0.1) between the subject's platelet count and the contact level of sport chosen to play. However, a significant association was found between higher frequency of sports participation and higher platelet count (analyzed by groups ≤ or >50 and counts ≤ or >30 (×109/L)) when the highest frequency of participation in any sport (regardless of contact level) was assessed (p < 0.025). When only the sport with the highest contact rating was considered, patients with higher counts played their highest contact sport more frequently than did those patients with lower counts. In particular, subjects with counts ≤ 30 ×109/L played their highest contact sport less frequently, eg more commonly < 1x/month, compared to subjects with platelet counts > 30 ×109/L who played more commonly > 1x/month (p=0.025) [figure]. Twenty injuries were recorded across 10 different sports and 17 patients, but no serious bleeding injuries were reported. There was a statistically significant association (p = 0.002) between higher contact levels and greater incidence of injury. However, there was no statistically significant association (p > 0.1) between estimated platelet count at time of injury and the contact level of sport. As recorded by the patients and/or the patients' parents, 26% of general concerns came from physicians, 53% from parents and 21% from patients themselves. Data collected on the participants' personal concerns showed that higher platelet counts were associated with fewer personal concerns being expressed (p < 0.025). However, when each personal concern was analyzed there were no statistically significant trends or associations (p > 0.1) found between any specific concern and platelet count. Across all contact and limited-contact sports, the most frequently expressed concern was that the sport was too dangerous. The most frequently expressed concern for non-contact sports was that the patient was too tired to play. Conclusions: There was a significant association between higher frequency of sports participation, but not higher contact level, with higher platelet counts. Higher incidences of injury were associated with higher contact levels, but not with lower platelet counts, suggesting that children with ITP can participate in non-contact sports and many contact and limited-contact sports with low risk of injury. Therefore, we believe that sports participation for children with ITP is generally too restricted and greater encouragement for children to be athletic in the sport of their choice is warranted. Disclosures: Bussel: Sysmex: Research Funding; Shionogi: Membership on an entity's Board of Directors or advisory committees, Research Funding; Eisai: Membership on an entity's Board of Directors or advisory committees, Research Funding; Ligand: Membership on an entity's Board of Directors or advisory committees, Research Funding; Immunomedics: Research Funding; IgG of America: Research Funding; Genzyme: Research Funding; GlaxoSmithKline: Family owns GSK stock, Family owns GSK stock Other, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cangene: Research Funding; Amgen: Family owns Amgen stock Other, Membership on an entity's Board of Directors or advisory committees, Research Funding; Portola: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1368-1368
Author(s):  
Mansoor N. Saleh ◽  
James B Bussel ◽  
Raymond SM Wong ◽  
Balkis Meddeb ◽  
Abdulgabar Salama ◽  
...  

Abstract Introduction: ITP, characterized by a reduction in platelets leading to thrombocytopenia, which persists for >12 months is considered chronic (cITP). Eltrombopag is an oral thrombopoietin receptor agonist approved for treatment of patients with cITP aged ≥1 year refractory to other treatments (eg corticosteroids, immunoglobulins). The recently completed Phase III EXTEND (Eltrombopag eXTENded Dosing) study was a global, open-label, extension study of patients with cITP, who received eltrombopag or placebo in prior eltrombopag clinical studies. The primary objective of EXTEND was to describe the long-term safety and tolerability of eltrombopag treatment in these patients. Here, we examine the occurrence of hepatobiliary and thromboembolic events (TEEs) as adverse events (AEs) of special interest in this study. Methods :Adult patients (≥18 years old) diagnosed with cITP according to ASH/BCSH guidelines were enrolled and received eltrombopag starting at 50 mg/day. Dose was titrated to 25-75 mg per day or less often as required, based on individual platelet count responses (targeted range ≥50-200x109/L). Patients who received 2 years of treatment and transitioned off eltrombopag due to commercial availability of eltrombopag were considered to have completed the study, whether or not they continued treatment with eltrombopag. The primary endpoint included detection and documentation of investigator-reported AEs, which included hepatobiliary AEs and TEEs. Analyses were conducted using the safety population, defined as all subjects who entered the study and had taken at least one dose of the study medication. Results:302 patients were enrolled and received at least one dose of eltrombopag: 67% were female; 38% splenectomized; 49% aged 18-49 years. Median duration of exposure was 2.4 years (range, 2 days to 8.8 years) and mean average daily dose was 50.2 (range, 1-75) mg/day. Overall, 259/302 (86%) achieved platelet counts of ≥50×109/L at least once during the study and 126/248 (51%) patients maintained continuous platelet counts ≥50×109/L for at least 31 weeks. Incidence of bleeding symptoms (WHO grades 1-4) generally decreased over time in patients with available data, from 57% (n=171/302) at baseline to 16% at 1 year (n=13/80), and 21% (12/58) at 2 years. 45 (15%) patients experienced at least one hepatobiliary AE, with the highest incidence within the first year of treatment (Figure A). AEs of increased ALT or AST led to the discontinuation of five and three patients, respectively and four patients discontinued due to an AE of increased blood bilirubin. Nine patients experienced ALT and/or AST >3 x upper limit of normal (ULN) and total bilirubin >1.5xULN. 19 (6.3%) patients experienced a total of 23 TEEs. Most events occurred in the first year (Figure B), and none after year 4. TEEs included deep vein thrombosis (n=6), cerebral infarction (stroke) [n=3], myocardial infarction (n=4), transient ischemic attack (n=2), others (n=8, 1 occurrence of each). A clear association with elevated platelet counts was not observed. Platelets >200x109/L at the time of the TEE were recorded in 8/19 patients; 6/19 experienced the TEE at or shortly after achieving their maximum platelet count. In total, 10 patients discontinued because of TEEs. Conclusions: Long-term treatment with eltrombopag in patients with cITP led to sustained platelet increases and reduced bleeding symptoms. The highest incidences of hepatobiliary AEs and TEEs occurred during the first year of treatment, though several events were recorded after 3 years of therapy. Long-term eltrombopag therapy was well-tolerated with a positive benefit-risk relationship in adults with cITP, with decreasing events after the first year of treatment. Disclosures Saleh: GSK: Consultancy, Research Funding, Speakers Bureau. Bussel:Amgen, Novartis & GSK: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Boehringer Ingleheim, Prophylix Pharma, Protalex, Rigel Pharmaceuticals: Research Funding; Momenta Pharmaceuticals, Novartis, Prophylix Pharma, Protalex, Rigel Pharmaceutical: Membership on an entity's Board of Directors or advisory committees; UptoDate: Patents & Royalties; Physicians Education Resource: Speakers Bureau. Wong:Bayer, Biogen-Idec and Novartis: Consultancy; Bayer, Biogen-Idec, Bristol-Myers Squibb, GlaxoSmithKline, Johnson & Johnson, Merck Sharp & Dohme, Novartis, Pfizer, and Roche: Research Funding; Biogen-Idec and Novartis: Membership on an entity's Board of Directors or advisory committees. El-Ali:Novartis: Employment. Quebe-Fehling:Novartis: Employment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2428-2428 ◽  
Author(s):  
Michael D. Tarantino ◽  
Jenny M. Despotovic ◽  
John Roy ◽  
John Grainger ◽  
Nichola Cooper ◽  
...  

Abstract Background: Romiplostim is approved globally for use in adults with ITP and in the EU for children with ITP. More comprehensive data are needed on the use of romiplostim in children with ITP. Objective: To examine the safety and efficacy of romiplostim in trials in children with ITP. Methods: Data were combined from 5 romiplostim trials in children with ITP, both placebo-controlled (a phase 1/2 and a phase 3 trial) and open-label (a 3-year trial and 2 extension trials); trial data have been reported previously (Bussel Blood 2011, Bussel PBC 2014, Tarantino Lancet 2016, Tarantino ASH 2017, Grainger ASH 2017). Platelet counts in the 4 weeks after use of rescue medication were excluded from analyses. Descriptive statistics were used. Number (n), mean, standard deviation (SD), median, quartile range (Q1, Q3), minimum (min), and maximum (max) for continuous variables, and number and percentage for categorical variables were provided. Results: Patients (N=286, 24 initially placebo and 262 initially romiplostim) had median (Q1, Q3) age of 10 (6, 13) years, ITP duration of 1.9 (1, 4) years, and baseline platelet count of 14 (8, 23)×109/L. Previously, 88% had received corticosteroids, 87% IVIg, and 21% rituximab; 23% had received >3 prior treatments and 7% had prior splenectomy. Of the 282 patients exposed to romiplostim (20 initially received placebo), the median (min, max) duration of treatment was 65 (8, 471) weeks, with a median (min, max) average weekly dose of 6.6 (0.1, 9.7) μg/kg; total exposure was 468 patient-years. The most common reasons for discontinuing the parent study for romiplostim-treated patients were per protocol (19%; eg, sponsor decision, death, lost to follow-up), consent withdrawn (3%), noncompliance (1%), and administrative decision (1%). Of romiplostim-treated patients, 24% had serious adverse events (SAEs), most commonly epistaxis, low platelet counts, and headache (Table). There were 7 cases of postbaseline neutralizing antibody against romiplostim: 2 transient and 5 persistent. There were no neutralizing antibodies against endogenous TPO. For patients undergoing bone marrow biopsies in the 3-year open-label trial, there were no findings of collagen or bone marrow abnormalities (Year 1 n=27, Year 2 n=5, vs. baseline) (Grainger et al, ASH 2017). One patient had an increase in modified Bauermeister bone marrow grade from 0 to 2 (fine reticulin fiber network) with no associated AEs (the only AEs were a cold and injection site pain); per protocol, there was no follow-up biopsy. Once at a steady dose of 10 μg/kg, most (11/16) of this patient's platelet counts were ≥30×109/L. Investigators reported thrombocytosis AEs; 1 patient had a platelet count of 1462×109/L at Week 14 for 1 week and another had elevated platelet counts 10 times between Weeks 20-172 (max of 872×109/L); there were no associated thrombotic events. Median platelet counts rose quickly and were over 50×109/L from Week 12 on (Figure). Platelet response rates also rose quickly. Overall, 89% of romiplostim-treated patients (vs 8% of placebo) had a platelet response (platelet counts ≥50×109/L; Figure). For romiplostim-treated patients, the first platelet responses occurred after a median of 6 weeks. The median % (Q1, Q3) of months responding was 76% (25%, 93%) and # of months responding was 11 (3, 20); from time of first monthly response, the median (Q1, Q3) % of months responding was 92% (75%, 100%) and # of months responding was 14 (7, 23). Nineteen romiplostim-treated patients discontinued all ITP therapies including romiplostim for ≥6 months while maintaining platelet counts ≥50×109/L (here defined as remission). These treatment-free periods lasted a median (Q1, Q3) of 12 (8, 14) months; no placebo patients remained free of treatment. There were no clear differences between those who did and did not enter remission (ie, age, sex, race, past treatment, ITP duration, baseline platelet count). Bleeding was reported for most (68%) patients: mostly grade 1/2, with 10% having grade 3 bleeding (most commonly epistaxis in 13 patients) and 2 patients having grade 4 bleeding (both reported as "ITP"). Conclusions: In this comprehensive database of romiplostim ITP trials in 286 children with 468 patient-years of romiplostim exposure, romiplostim was well tolerated. With romiplostim, the vast majority (89%) of patients had a platelet response, with some children able to discontinue all ITP treatments for ≥6 months. Disclosures Tarantino: Health Resources and Services Administration: Research Funding; Centers for Disease Control and Prevention: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees; Shire: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Other: Reviews grants; Novo Nordisk: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Grifols: Research Funding, Speakers Bureau. Despotovic:AmGen: Research Funding; Sanofi: Consultancy; Novartis: Research Funding. Grainger:Biotest: Consultancy; Ono Pharmaceuticals: Consultancy; Amgen: Consultancy, Honoraria, Other: Educational grant; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cooper:Amgen, Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Kim:Amgen Inc.: Employment, Equity Ownership. Eisen:Amgen Inc.: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1141-1141 ◽  
Author(s):  
Shuoyan Ning ◽  
Brent Kerbel ◽  
Jeannie Callum ◽  
Yulia Lin

Abstract Introduction: Lumbar puncture (LP) is a frequently performed diagnostic and therapeutic intervention in adult oncology patients. While thrombocytopenia is common in this patient population, the minimum "safe" platelet count required for LPs is unknown. Recent guidelines from the AABB (American Association of Blood Banks) recommend a pre-procedure platelet count of 50 x 109/L. However this recommendation is largely based on expert opinion, and there remains a paucity of studies in the adult oncology literature to address this important question. Methods: We retrospectively reviewed all oncology patients ≥18 years who underwent 1 or more LPs over a 2 year period at a single tertiary care institution to determine 1) the range of platelet counts at which LPs are performed; 2) the rate of traumatic taps; and 3) the rate of hemorrhagic complications. Laboratory, clinical, and transfusion information were extracted through the Laboratory Information System, chart review, and blood bank database, respectively. Thrombocytopenia was defined as a platelet count of < 150 x 109/L. Pre-LP platelet counts were those collected ≤24 hours from, and closest to the time of the LP. The following bleeding risk factors were documented: end stage renal disease; platelet dysfunction; von Willebrand disease; hemophilia. Anticoagulation, anti-platelet, and non-steroidal inflammatory use was also recorded, with accuracy limited by the study's retrospective nature. All patients with coagulopathy were excluded (INR ≥ 1.5, aPTT ≥ 40, fibrinogen ≤ 1.0). Traumatic tap was defined as 500 or more red blood cells per high-power field in the cerebrospinal fluid. A follow up of 1 week after LP was used to capture any hemorrhagic complications. Results: From January 2013 to December 2014, 135 oncology patients underwent 369 LPs; 64 (47.4%) patients were female, and the mean age was 59 years (range 20-87). 119 (88.1%) patients had a primary hematological diagnosis. 113 (30.6%) LPs were performed in thrombocytopenic patients. 28 (7.6%) procedures had a pre-procedure platelet count of ≤ 50 x 109/L, with 18 receiving a single platelet transfusion on the day of the LP. Of these 18 transfusions, only 1 had a post-transfusion platelet count available prior to LP with no improvement in platelet count (33 x 109/L). 15 transfusions had post-LP platelet counts within 24 hours of the transfusion (8 below 50 x 109/L with lowest 14 x 109/L), 1 had post-LP platelet count within 24-48 hours (54 x 109/L) and 1 did not have a post-transfusion platelet count. Traumatic taps occurred in 17 (15.0%) LPs in patient with thrombocytopenia, compared to 26 (11.0%) LPs in patients with a normal platelet count (fisher's exact test P=0.39). There was 1 traumatic tap in a patient with a pre-LP platelet count of ≤ 50 x 109/L; however, this patient received a pre-LP platelet transfusion for a platelet count of 42 x 109/L and had a post-LP platelet count of 66 x 109/L. Presence of bleeding risk factors did not increase the risk of a traumatic tap (present in 48.8% of traumatic taps vs. 88.3% of non-traumatic taps). There were no hemorrhagic complications. Conclusion: Among this cohort of adult oncology patients undergoing diagnostic and therapeutic LPs, there were no hemorrhagic complications. There was no significant increase in traumatic taps in patients with thrombocytopenia or bleeding risk factors. While platelet transfusions were frequently administered for patients with a platelet count of ≤ 50 x 109/L, post-transfusion platelet counts were infrequently assessed prior to the procedure. Our findings question whether a platelet transfusion threshold of 50 x 109/L is necessary for lumbar puncture.Table 1.Platelet Count Pre-LP(x109/L)Number of LPsNumber of Traumatic TapsNumber of Hemorrhagic Complications0-90N/AN/A10-2030021-5070051-1003380101-1495270> 150242270Unknown1400< 50 x 109/L and received platelet transfusion on day of LP181*0Total369430*There was one traumatic tap in a patient with a platelet count of 42 x 109/L who received a platelet transfusion pre-LP. The post transfusion platelet count was 66 x 109/L. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1062-1062
Author(s):  
Nora Butta ◽  
Ihosvany Fernandez Bello ◽  
María Teresa Álvarez Román ◽  
María Isabel Rivas Pollmar ◽  
Miguel Canales ◽  
...  

Abstract Background: Patients with platelet counts less than 20 or 30 x 109/L have an increased risk of bleeding. Nevertheless, some patients with immune thrombocytopenia (ITP) have fewer bleeding symptoms than expected. In a previous communication (ASH 2014) we reported that these patients presented high microparticles (MP)-associated procoagulant activity to compensate bleeding risk and that cellular origin of these MPs were platelets and red cells. However, other mechanisms might be involved. Objective: The aim of this work was to analyse the involvement of other factors to compensate bleeding risk in thrombocytopenic ITP patients. Moreover, the feasibility of using the coagulation global assays thromboelastrometry (ROTEM) and Calibrated Automated Thrombogram (CAT) to test haemostasis in these patients was evaluated. Methods: Fifty patients with chronic ITP with platelet count less than 50 x 109/L and twenty-five healthy controls were included. Platelet counts were determined with a Coulter Ac. T Diff cell counter (Beckman Coulter, Madrid, Spain). Citrated blood was centrifuged at 152 g 10 min at 23°C for obtaining platelet rich plasma (PRP) and at 1,500 g for 15 min at 23°C for platelet-poor plasma (PPP) and aliquots were stored at -70ºC until analysis. To assess the kinetics of clot formation, non-activated ROTEM was performed on PRP adjusted to a platelet count of 25 x 109/L. Clotting time (CT, time from start of measurement until initiation of clotting [in seconds], alpha angle, which reflects the rate of fibrin polymerisation (tangent to the curve at 2-mm amplitude [in degrees]), maximum clot firmness,which reflects the maximum tensile strength of the thrombus (MCF, [in mm]) and LI60, which describes the percentage of maximum clot strength present at 60 min (in %), were recorded. Plasma thrombin generation was measured in PPP using the Calibrated Automated Thrombogram (CAT) test at a final concentration of 1 pM tissue factor and 4 mM phospholipids (PPP-Reagent LOW, Thrombinoscope BV, Maastricht, The Netherlands). We evaluated the endogenous thrombin potential (ETP, the total amount of thrombin generated over time); the lag time (the time to the beginning of the explosive burst of thrombin generation); the peak height of the curve (the maximum thrombin concentration produced); and the time to the peak. Fibrinolytic proteins and E-selectin was tested in PPP using commercialized kits. Results were expressed as mean±SD. Comparisons of quantitative variables were made with Mann-Whitney test and correlations with Spearman test. Values of p≤0.05 were considered statistically significant. Results: PRP from ITP patients showed a prolonged CT (control: 550+ 95 sec, ITP: 890+165 sec, p<0.01), diminished alpha angle (control: 62.8+4.3, ITP: 53.5+7.5, p<0.05), and increased MCF (control: 46.7+3.1mm, ITP: 52.4+6.1 mm, p<0.05) and LI60 (control: 90.6+3.0% , ITP: 95.5+3.4, p<0.05) when compared with controls. In order to evaluate whether increased LI60 values were due to an imbalance in fibrinolysis related proteins, tPA, uPA, TAFI and PAI-1 plasma levels were measured. No differences were observed between patients and healthy controls except for PAI-1 which level was increased in ITP patients (control: 14.7 ng/ml+11.7 ng/ml, ITP: 30.4+17.5, p<0.05). Since plasma PAI-1 might be increased as consequence of endothelial damage, plasma concentration of E-selectin, marker of endothelial injury, was determined. E-selectin was increased in samples from ITP patients (control: 10.5 ng/ml+3.9 ng/ml, ITP: 31.6+14.0, p<0.05). Moreover, MCF and LI60 ROTEM parameters correlated to E-selectin plasma concentration (Spearman r values 0.6643, p<0.001 for MCF; 0.6053, p<0.001 for LI60). Thrombin generation in PPP was also measured and a shorter time to peak (control: 9.3+1.2 sec, ITP: 8.3+1.7 sec,p<0.05) and increased ETP (control: 1223.8+257.7 nMxmin, ITP: 1696.4+524 nMxmin,p<0.05) and peak (control: 225.7+82.8.1 nM, ITP: 330.4+106.1 nM,p<0.05) were observed in ITP patients. Conclusions: We demonstrated that ITP patients presented a hypercoagulable profile that might be related, at least in part, to a reduced fibrinolysis mainly caused by an increase in PAI-1 level that seemed to be related to endothelial damage. Moreover ROTEM and CAT appeared to be useful tools for evaluating coagulant profile in ITP patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2079-2079
Author(s):  
Alexandra Schifferli ◽  
Guillaume Moulis ◽  
Bertrand Godeau ◽  
Thierry Leblanc ◽  
Marc Michel ◽  
...  

Abstract Introduction The prognosis of ITP is age-related. In 80% of cases, children have a self-limiting course, whereas adults recover less frequently or relapse and overall ITP has a chronic course in ~70% of the cases. The risk of chronicity increases above the age of 10 years in pediatric cohorts, but data describing adolescents and young adults (AYAS) are lacking. Based on the assumption that adults are at greater risk of bleeding, treatment protocols and practice guidelines usually advise medical intervention. This is surely the right strategy for elderly patients or those with co-morbidities with indisputable higher bleeding risks. We assume that defining ITP in only two age categories might be an inaccurate oversimplification. AYAS have other needs, such as body appearance, mental health, social and financial issues. In addition, limitation of activity, side effects of steroids and risk of chronic disease are major reasons to adapt medical care. Even if AYAS have a similar risk of chronicity like adults, they may have greater potential to restore immune tolerance -in analogy to children- but with the help of an appropriate immunomodulatory therapy. The analysis of clinical data is the first step to design new strategies. Methods Data were extracted from the PARC-ITP and the CARMEN-France registry, open since 2004 and 2013, respectively. PARC is an international multi-center registry collecting data prospectively of children and adults with newly diagnosed ITP. The CARMEN-France registry enrolls all incident ITP in adults 18 years from the French Midi-Pyrénées region, and since 2016 increasingly in other French centers. Demographics, diagnostic methods, clinical data, management are continuously documented in CARMEN and at defined timepoints in PARC (initial, at 6,12 months follow-up (FU), and then yearly). Patients 12-25 years old with initial platelet counts &lt;100x10 9/l were included. Patients with secondary or misdiagnosed ITP (n=57), and pregnant women were excluded (n=10). Sustained remission was defined as a platelet count 100x10 9/l at 12 months (measured at 11-18 months) and without treatment for at least 6 months. For patients with borderline values (100-149 x10 9/l), later FUs were analyzed to determine the persistency of remission, and, if necessary, reassign patient's remission state. Only bleeding location, but not grade was analyzed in common. Data were analyzed with descriptive statistics. Results A total of 656 AYAS (61% female) with the initial diagnosis of primary ITP were recorded in the combined database until 2021. FU information was available for 547 (83%) and 470 (72%) patients at 6 and 12 months, respectively. Initial median platelet count was 12 x10 9/l (IQR 5). In 109 patients the diagnosis was incidental (17%), 538 patients suffered of bleeding symptoms (82%) (Table 1). At 6 months 49% of patients had platelets &lt;100 x10 9/l. At 12 months 50% fulfilled the criteria of chronic disease, with a median platelet count of 57x10 9/l (IQR 32). Asymptomatic chronic ITP was reported in 40% (no bleeding between 6-12 months). Platelet-enhancing drugs were reported in 66%, 45% and 30% at diagnosis, until 6 months and between 6-12 months, resp. Corticosteroids were preferred at all time-points, second-line treatments were various and given to 29% of patients with treatment beside 6 months (Table1). There were no differences in initial diagnostic procedures, comorbidity, bleeding symptoms, median platelet counts, percentage of severe thrombocytopenia (&lt;20 x10 9/l) and need of treatment and drug choice between women and men (besides gynecological bleeding). There were small differences in the subgroup of adolescents (12-18 years, 59% female) compared to young adults (18-25 years, 70% female), the later had more moderate thrombocytopenia at diagnosis, less bleeding at all FUs, but similar or even more treatments (Table 2). Conclusion This is the first prospective project describing AYAS with a diagnosis of primary ITP. Analysis exhibited a clinical pattern among children and adults, with a risk of chronicity of 50%, and prolonged need of treatment (6-12 months) in 30% of cases. At diagnosis 17% had no bleeding signs, compared to 9% of children and 31% of adults in previous analysis of the PARC. There were no gender differences. Surprisingly, young adults experienced a greater number of non-bleeding phenotype than adolescents at all FUs, with comparable need of treatment between 6-12 months FU. Figure 1 Figure 1. Disclosures Schifferli: Novartis: Honoraria, Research Funding; Sobi: Honoraria. Moulis: Argenx: Membership on an entity's Board of Directors or advisory committees; Sobi: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Grifols: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Godeau: Novartis: Consultancy; Grifols: Consultancy; Sobi: Consultancy; Amgen: Consultancy. Michel: Rigel: Honoraria; Argenx: Honoraria; UCB: Honoraria; Alexion: Honoraria; Amgen: Consultancy; Novartis: Consultancy. Grainger: Amgen: Consultancy, Honoraria; Novartis: Consultancy, Honoraria. Kuehne: Amgen: Research Funding; SOBI: Honoraria; UCB: Honoraria; Novartis: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document