scholarly journals Cytokine Rescue and Targeting of Inflammation-Sensitive RUNX1 Deficient Human CD34+ Hematopoietic Stem and Progenitor Cells

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 14-15
Author(s):  
Amy Fan ◽  
Armon Azizi ◽  
Kevin Nuno ◽  
Yusuke Nakauchi ◽  
Feifei Zhao ◽  
...  

Introduction: Loss-of-function mutations in Runt-related transcription factor 1 (RUNX1) are commonly found in both germline and somatic hematopoietic malignancies and confer particularly poor prognosis in AML. However, it remains unclear how RUNX1 functions during hematopoietic and leukemic development, particularly because RUNX1 mutations alone are not sufficient to cause myeloid malignancy and some models show that RUNX1 mutations confer hematopoietic stem cell defects. Recently, mouse models have shown that RUNX1-deficient neutrophils upregulate NFκB activity, and hematopoietic stem and progenitor cells (HSPCs) with overactive inflammatory pathways gain competitive advantage under chronic inflammation. Thus, we hypothesized that while RUNX1 mutations impair normal HSPC function, inflammation may select for or rescue RUNX1 mutant HSPCs. Methods: To interrogate the effect of RUNX1 loss in human CD34+ HSPCs, we disrupted the RUNX1 locus using CRISPR/Cas9 and AAV6-mediated homology directed repair. Importantly, by using an AAV6 vector that carries arms of homology flanking a fluorescent reporter expression cassette, we are able to track and isolate cells edited at the RUNX1 locus for in vitro and in vivo functional analyses and for molecular characterization using RNA-seq and ATAC-seq. Results: First, we used this system to evaluate the functional consequences of RUNX1 knockout (KO) in human CD34+ HSPCs. Loss of RUNX1 caused early erythroid-megakaryocytic differentiation arrest and skewing toward monocytic differentiation. RUNX1 KO cells demonstrated decreased proliferation, cell cycle arrest, and reduction in serial replating potential in vitro. In competitive transplantation experiments in NSG mice, RUNX1 KO engraftment decreased over time in both primary and secondary transplant, revealing a competitive disadvantage. Second, ATAC-seq peak motif analysis showed that PU.1 and NFκB motifs are more accessible upon RUNX1 KO whereas GATA, TAL1, and RUNX motifs were less accessible. Similarly, gene set enrichment analysis of transcriptional data confirmed the broad upregulation of NFκB-mediated inflammatory programs; downregulation of GATA1-dependent heme metabolism and platelet development pathways; and downregulation of MYC- and E2F-dependent cell cycle programs. These observations imply that RUNX1 directs cell fate decisions by recruiting and activating lineage-specific hematopoietic transcription factors and augmenting stem cell proliferation programs. We next sought to determine which cytokines are sufficient to drive RUNX1 KO cell expansion. RUNX1 KO cells not only expanded preferentially in NSG mice expressing human SCF, GM-CSF, and IL-3 (NSGS mice), but also were no longer defective in competitive transplants in these mice. Further, treatment with IL-3 was sufficient to significantly expand RUNX1 KO cells in vitro. Flow cytometry revealed that the IL-3 receptor CD123 is upregulated in RUNX1 KO cells compared to control. Similarly, RUNX1-mutant AML patient samples express higher levels of CD123 than RUNX1-wildtype AML patient samples. Finally, evaluation of publicly available RUNX1 ChIP-seq of bone marrow CD34+ HSPCs revealed that RUNX1 directly binds the promoter of CD123. Ongoing efforts are aimed at determining whether targeting CD123 and IL-3 signaling may be a viable therapeutic approach for the prevention or treatment of RUNX1-mutant myeloid malignancies. Conclusion: In summary, we established a RUNX1-deficient human HSPC model not only to evaluate the role of RUNX1 in hematopoiesis, but also to characterize intrinsic and extrinsic factors involved in RUNX1-deficient clonal expansion and leukemic transformation. We show that RUNX1 KO causes monocytic skew at the expense of erythro-megakaryocytic potential and severely limits HSC engraftment and expansion in vivo. Molecular profiling reveals that these effects are associated with dysregulation of both transcription factor activity and cytokine signaling. However, exposure to IL-3 rescues RUNX1-deficient cell proliferative defects in vitro and competitive engraftment defects in vivo. This hypersensitivity to IL-3 signaling is mediated in part by increased expression of the IL-3 receptor CD123. These findings reveal how RUNX1 mutations may initially behave in a deleterious manner but can ultimately confer an advantage to HSPCs under certain environmental conditions. Disclosures Majeti: CD47 Inc.: Divested equity in a private or publicly-traded company in the past 24 months; Gilead Sciences: Divested equity in a private or publicly-traded company in the past 24 months, Patents & Royalties; Kodikaz Therapeutic Solutions Inc: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2370-2370
Author(s):  
Daniel Ewerth ◽  
Stefanie Kreutmair ◽  
Birgit Kügelgen ◽  
Dagmar Wider ◽  
Julia Felthaus ◽  
...  

Abstract Introduction: Hematopoietic stem and progenitor cells (HSPCs) represent the lifelong source of all blood cells and continuously renew the hematopoietic system by differentiation into mature blood cells. The process of differentiation is predominantly initiated in G1 phase of the cell cycle when stem cells leave their quiescent state. During G1 the anaphase-promoting complex or cyclosome (APC/C) associated with the coactivator Cdh1 is highly active and marks proteins for proteasomal degradation to regulate proliferation. In addition, Cdh1 has been shown to control terminal differentiation in neurons, muscle cells or osteoblasts. Here we show that Cdh1 is also a critical regulator of human HSPC differentiation and self-renewal. Methods: Human CD34+ cells were collected from peripheral blood (PB) of G-CSF mobilized donors and cultured in the presence of different cytokine combinations. To analyze cell division and self-renewal versus differentiation, CFSE staining was used in combination with flow cytometric detection of CD34 expression. The knockdown and overexpression of Cdh1 was achieved by lentiviral delivery of suitable vectors into target cells. After cell sorting transduced (GFP+) CD34+ cells were used for in vitro differentiation in liquid culture or CFU assay. For in vivo experiments purified cells were transplanted into NSG mice. Results: G-CSF mobilized CD34+ cells showed effective differentiation into granulocytes (SCF, G-CSF), erythrocytes (SCF, EPO) or extended self-renewal (SCF, TPO, Flt3-L) when stimulated in vitro. The differentiation was characterized by a fast downregulation of Cdh1 on protein level, while Cdh1 remained expressed under self-renewal conditions. A detailed analysis of different subsets, both in vitro and in vivo, showed high Cdh1 level in CD34+ cells and low expression in myeloid cells. Analysis of proliferation revealed lowest division rates during self-renewal, accompanied by higher frequency of CD34+ cells. The fastest proliferation was found after induction of erythropoiesis. These experiments also showed a more rapid decrease of HSPCs' colony-forming ability and of CD34+ cells during granulopoiesis after 2-3 cell divisions in contrast to a moderate decline under self-renewal conditions. The depletion of Cdh1 (Cdh1-kd) had no effect on total cell numbers or proliferation detected by CFSE during differentiation and self-renewal, but showed an increase in S phase cells. These results were confirmed at the single cell level by measuring the cell cycle length of individual cells. Independent of cell cycle regulation, Cdh1-kd cells showed a significant maintenance of CD34+ cells under self-renewal conditions and during erythropoiesis with lower frequency of Glycophorin A+ cells. In CFU assays, the Cdh1-kd resulted in less primary colony formation, notably CFU-GM and BFU-E, but significantly more secondary colonies compared to control cells. These results suggest that the majority of cells reside in a more undifferentiated state due to Cdh1-kd. The overexpression of Cdh1 showed reversed results with less S phase cells and tendency to increased differentiation in liquid culture and CFU assays. To further validate our results in vivo, we have established a NSG xenotransplant mouse model. Human CD34+ cells depleted of Cdh1 engrafted to a much higher degree in the murine BM 8 and 12 weeks after injection as shown by higher frequencies of human CD45+ cells. Moreover, we also found an increased frequency of human CD19+ B cells after transplantation of CD34+ Cdh1-kd cells. These results suggest an enhanced in vivo repopulation capacity of human CD34+ HSCs in NSG mice when Cdh1 is depleted. Preliminary data in murine hematopoiesis support our hypothesis showing enhanced PB chimerism upon Cdh1-kd. Looking for a mediator of these effects, we found the Cdh1 target protein TRRAP, a cofactor of many HAT complexes, increased upon Cdh1-kd under self-renewal conditions. We use currently RT-qPCR to determine, if this is caused by a transcriptional or post-translational mechanism. Conclusions: Loss of the APC/C coactivator Cdh1 supports self-renewal of CD34+ cells, represses erythropoiesis in vitro and facilitates engraftment capacity and B cell development of human HSPCs in vivo. This work was supported by Josè Carreras Leukemia Foundation grant DCJLS R10/14 (to ME+RW) Disclosures Ewerth: Josè Carreras Leukemia Foundation: Research Funding. Wäsch:German Cancer Aid: Research Funding; Comprehensiv Cancer Center Freiburg: Research Funding; Janssen-Cilag: Research Funding; MSD: Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 83-83
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Ann Atzberger ◽  
Dengli Hong ◽  
...  

Abstract Hematopoietic stem cells (HSCs) in adults are largely quiescent, periodically entering and exiting cell cycle to replenish the progenitor pool or to self-renew, without exhausting their number. Expression profiling of quiescent HSCs in our and other laboratories suggests that high expression of the zinc finger transcription factor GATA-2 correlates with quiescence. We show here that TGFβ1-induced quiescence of wild-type human cord blood CD34+ cells in vitro correlated with induction of endogenous GATA-2 expression. To directly test if GATA-2 has a causative role in HSC quiescence we constitutively expressed GATA-2 in human cord blood stem and progenitor cells using lentiviral vectors, and assessed the functional output from these cells. In both CD34+ and CD34+ CD38− populations, enforced GATA-2 expression conferred increased quiescence as assessed by Hoechst/Pyronin Y staining. CD34+ cells with enforced GATA-2 expression showed reductions in both colony number and size when assessed in multipotential CFC assays. In CFC assays conducted with more primitive CD34+ CD38− cells, colony number and size were also reduced, with myeloid and mixed colony number more reduced than erythroid colonies. Reduced CFC activity was not due to increased apoptosis, as judged by Annexin V staining of GATA-2-transduced CD34+ or CD34+ CD38− cells. To the contrary, in vitro cultures from GATA-2-transduced CD34+ CD38− cells showed increased protection from apoptosis. In vitro, proliferation of CD34+ CD38− cells was severely impaired by constitutive expression of GATA-2. Real-time PCR analysis showed no upregulation of classic cell cycle inhibitors such as p21, p57 or p16INK4A. However GATA-2 expression did cause repression of cyclin D3, EGR2, E2F4, ANGPT1 and C/EBPα. In stem cell assays, CD34+ CD38− cells constitutively expressing GATA-2 showed little or no LTC-IC activity. In xenografted NOD/SCID mice, transduced CD34+ CD38−cells expressing high levels of GATA-2 did not contribute to hematopoiesis, although cells expressing lower levels of GATA-2 did. This threshold effect is presumably due to DNA binding by GATA-2, as a zinc-finger deletion variant of GATA-2 shows contribution to hematopoiesis from cells irrespective of expression level. These NOD/SCID data suggest that levels of GATA-2 may play a part in the in vivo control of stem and progenitor cell proliferation. Taken together, our data demonstrate that GATA-2 enforces a transcriptional program on stem and progenitor cells which suppresses their responses to proliferative stimuli with the result that they remain quiescent in vitro and in vivo.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-42
Author(s):  
Haojing Rong ◽  
Kirti Sharma ◽  
Fred Csibi ◽  
Bin Yang ◽  
Scott Rusin ◽  
...  

STAT3 (signal transducers and activators of transcription 3) is a transcription factor and a member of the STAT protein family that is activated through a variety of different cytokine and growth factor receptors via JAKs, as well as through oncogenic fusion proteins and gain-of-function (GoF) mutations in STAT3 itself. STAT3 hyperactivation and GoF mutations are found in numerous cancers, including clinically aggressive hematologic malignancies with high unmet medical need, such as peripheral T cell lymphomas (PTCLs) (Andersson et al., 2020). We have previously shown that a potent and selective STAT3 heterobifunctional degrader, KTX-201, strongly represses cell growth in models of STAT3-dependent heme malignancies (Csibi et al., 2019). Herein, we report on the cellular mechanisms underlying the anti-tumor effect of STAT3 degradation in PTCL and provide a model for the relationship between pharmacokinetics/ pharmacodynamics (PK/PD) and activity of KTX-201 in vivo. The relationship between STAT3 degradation by KTX-201, anti-tumor mechanism of action and in vivo activity were investigated in anaplastic large T cell lymphoma (ALCL) models, a subset of PTCLs. In vitro, a decrease of STAT3 by 90% for 48hr was required for ALCL cells to commit to death. To identify anti-tumor mechanism(s) of KTX-201 at the systems level, we performed a time-resolved analysis of the proteomic changes of SU-DHL-1 cells undergoing growth inhibition mediated by KTX-201 at GI95. We measured the abundance of 10,000 proteins and confirmed selective degradation of STAT3 by KTX-201 after 8h of treatment. Significant changes in several marker proteins known to be involved in STAT3-mediated proximal signaling in ALCL including SOCS3, Myc and Granzyme B were observed after 16h. Functional annotation analysis of proteins identified pathways that were significantly enriched in at least one time point. Using unsupervised hierarchical clustering of annotations, we found that proteins that increased in abundance over 48h of exposure to KTX-201 were associated with markers of apoptosis and those that decreased in abundance by 24h and 48h were associated with cytokine signaling and cell cycle, respectively. Based on these data, this study identifies inhibition of cytokine signaling, G1 cell cycle arrest and induction of apoptosis as key anti-tumor mechanisms associated with KTX-201 consistent with observed cell phenotypes. STAT3 degradation in tumor was characterized in mice bearing SU-DHL-1 tumors following single dose IV administration. The STAT3 PD response in tumor was correlated with exposures in tumor. At the dose of 25 mg/kg weekly where complete tumor regression was achieved, KTX-201 achieves >90% STAT3 degradation at 24h post dosing in SUDHL1 xenografts. STAT3 degradation was maintained at 90% at 4 days post dosing. The results from the PK/PD study suggests that STAT3 degradation in tumor of >90% is necessary for anti-tumor efficacy in vivo of KTX-201, but only for a limited duration, such as 4 days out of a weekly dosing cycle. Collectively, our data demonstrate that significant STAT3 degradation for a limited time during dosing interval with KTX-201 in ALCL promotes early changes in key signaling nodes involved with proliferation and cytokine stimulation, followed by profound changes in apoptotic proteins. By integrating mechanistic biology with a deep understanding of PK/PD and efficacy, this study provides a foundation for the clinical development of STAT3 degraders using intermittent dosing regimen for treatment of PTCL and other STAT3-dependent heme malignancies. Disclosures Rong: Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Sharma:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Csibi:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company, Ended employment in the past 24 months. Yang:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Rusin:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Shi:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Dey:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Karnik:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Mayo:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Yuan:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Chutake:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. McDonald:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Zhu:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Ji:Kymera Therapeutics: Current equity holder in publicly-traded company, Ended employment in the past 24 months. Liu:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Li:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Walker:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gollob:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Mainolfi:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company. Desavi:Kymera Therapeutics: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4478-4486 ◽  
Author(s):  
Takafumi Kimura ◽  
Andreas M. Boehmler ◽  
Gabriele Seitz ◽  
Selim Kuçi ◽  
Tina Wiesner ◽  
...  

Abstract The novel immunosuppressant FTY720 activates sphingosine 1-phosphate receptors (S1PRs) that affect responsiveness of lymphocytes to chemokines such as stromal cell-derived factor 1 (SDF-1), resulting in increased lymphocyte homing to secondary lymphoid organs. Since SDF-1 and its receptor CXCR4 are also involved in bone marrow (BM) homing of hematopoietic stem and progenitor cells (HPCs), we analyzed expression of S1PRs and the influence of FTY720 on SDF-1/CXCR4-mediated effects in human HPCs. By reverse transcriptase-polymerase chain reaction (RT-PCR), S1PRs were expressed in mobilized CD34+ HPCs, particularly in primitive CD34+/CD38- cells. Incubation of HPCs with FTY720 resulted in prolonged SDF-1-induced calcium mobilization and actin polymerization, and substantially increased SDF-1-dependent in vitro transendothelial migration, without affecting VLA-4, VLA-5, and CXCR4 expression. In nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice, the number of CD34+/CD38- cells that homed to the BM after 18 hours was significantly raised by pretreatment of animals and cells with FTY720, tending to result in improved engraftment. In addition, in vitro growth of HPCs (week-5 cobblestone area-forming cells [CAFCs]) was 2.4-fold increased. We conclude that activation of S1PRs by FTY720 increases CXCR4 function in HPCs both in vitro and in vivo, supporting homing and proliferation of HPCs. In the hematopoietic microenvironment, S1PRs are involved in migration and maintenance of HPCs by modulating the effects of SDF-1. (Blood. 2004;103:4478-4486)


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 864-864 ◽  
Author(s):  
Fukun Guo ◽  
Jie Li ◽  
Wei Du ◽  
Shuangmin Zhang ◽  
Wei Liu ◽  
...  

Abstract Abstract 864 The mammalian target of rapamycin (mTOR) integrates signals from nutrients, growth factors, and cellular energy status to control protein synthesis, cell growth, proliferation, survival and metabolism in various cancer cells, but its physiological function in the hematopoiesis process and signaling role in hematopoietic stem cell (HSC) regulation remain unknown. By using the inhibitor rapamycin, mTOR has previously been suggested to regulate megakaryocyte and dendritic cell proliferation and differentiation. Hyperactivation of mTOR by deletion of the negative regulators of mTOR, TSC1/TSC2 or PTEN, causes a loss of quiescence and long-term exhaustion of HSCs. Since conventional gene targeting of mTOR leads to early embryonic lethality, a conditional mTOR knockout mouse model has recently been generated. We have produced mTORflox/flox; Mx-Cre compound mice that allow interferon-induced mTOR deletion in bone marrow (BM) following a transplantation and polyI:C induction protocol. We found that depletion of mTOR drastically affected hematopoiesis: the mTORflox/flox;Mx-Cre BM recipient mice showed a marked reduction in total BM cellularity and in the numbers and frequency of myeloid and lymphoid cells, erythrocytes, and platelets in peripheral blood, bone marrow, and thymus, after induced mTOR deletion, resulting in bone marrow failure and lethality. Interestingly, the numbers of hematopoietic stem and progenitor cells (HSPCs; Lin−Sca-1+c-Kit+) and HSCs (CD150+ CD41−CD48− Lin−Sca-1+c-Kit+) in bone marrow increased transiently by approximately 5- and 8-fold, respectively, while the numbers of early progenitors (CMP, GMP, MEP, CLP) were mildly affected in the mutant mice 7–14 days after polyI:C treatment. While the more mature lineage committed mTOR−/− blood cells showed a cell cycle blockage and significantly increased apoptosis, mTOR−/− HSPCs and HSCs displayed a loss of quiescence and increased proliferation, as assessed by 5-bromodeoxyuridine incorporation assays, and a normal survival index. Transplantation of mTOR−/− BM cells into immunodeficient or syngeneic mice demonstrated that the mTOR−/− HSPCs failed to engraft and repopulate in the recipients. At the molecular level, mRNA microarray, quantitative real-time PCR and immunoblotting analyses of mTOR−/− HSPCs or Lin− cells revealed that the cell cycle inhibitor Rb was downregulated while the positive regulator of cell cycle E2F5 and pro-survival regulators MCL1 and BCL-xL were upregulated. mTOR deficiency abolished the activation of translational regulators S6K and 4E-BP but led to an increased activation of Akt. In addition, mTOR deficiency sensitized Lin− cells to DNA damage induced in vitro or in vivo by melphalan or mitomycin C (MMC), evidenced by a marked increase in γH2AX foci as well as DNA double-strand breaks (comet-tailed value of 30.2 ± 7.6 in mTOR−/− cells treated in vitro with melphalan and 37.6 ± 3.4 in mTOR−/− cells treated in vivo with MMC compared to 7.6 ± 2.1 in melphalan-treated WT cells and 17.3 ± 6.7 in MMC-treated WT cells, respectively). The increased DNA damage response can be attributed to an ∼300-fold reduction of the expression of FANCD2, a key component of the Fanconi DNA damage repair complex. Significantly, the effect of mTOR deficiency on Fanconi gene expression was specific to FANCD2, because the expression of other Fanconi proteins such as FANCA and FANCC was not affected in mTOR−/− Lin− cells. Intriguingly, the mTOR−/− Lin− cells phenocopied the DNA damage response of FANCD2−/− Lin− cells in vitro and in vivo. Similar effects of reduced FANCD2 expression and dampened DNA damage response were observed in human lymphoblasts treated with pp242, a mTOR kinase inhibitor. FANCD2-deficient human Fanconi anemia patient cells recapitulated the pp242-induced DNA damage phenotypes that could be rescued by FANCD2 reconstitution. Taken together, these results demonstrate that mTOR is a critical regulator of HSC quiescence and engraftment through the regulation of cell cycle machinery and is essential in multiple stages of hematopoiesis. Moreover, mTOR is required for maintaining genomic stability of HSPCs through modulation of the Fanconi anemia DNA damage response pathway. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Anagha Deshpande ◽  
Khan L. Cox ◽  
Fan Xuan ◽  
Mohamad Zandian ◽  
...  

AbstractChromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1557-1566 ◽  
Author(s):  
Stephen J. Szilvassy ◽  
Michael J. Bass ◽  
Gary Van Zant ◽  
Barry Grimes

Abstract Hematopoietic reconstitution of ablated recipients requires that intravenously (IV) transplanted stem and progenitor cells “home” to organs that support their proliferation and differentiation. To examine the possible relationship between homing properties and subsequent engraftment potential, murine bone marrow (BM) cells were labeled with fluorescent PKH26 dye and injected into lethally irradiated hosts. PKH26+ cells homing to marrow or spleen were then isolated by fluorescence-activated cell sorting and assayed for in vitro colony-forming cells (CFCs). Progenitors accumulated rapidly in the spleen, but declined to only 6% of input numbers after 24 hours. Although egress from this organ was accompanied by a simultaneous accumulation of CFCs in the BM (plateauing at 6% to 8% of input after 3 hours), spleen cells remained enriched in donor CFCs compared with marrow during this time. To determine whether this differential homing of clonogenic cells to the marrow and spleen influenced their contribution to short-term or long-term hematopoiesis in vivo, PKH26+ cells were sorted from each organ 3 hours after transplantation and injected into lethally irradiated Ly-5 congenic mice. Cells that had homed initially to the spleen regenerated circulating leukocytes (20% of normal counts) approximately 2 weeks faster than cells that had homed to the marrow, or PKH26-labeled cells that had not been selected by a prior homing step. Both primary (17 weeks) and secondary (10 weeks) recipients of “spleen-homed” cells also contained approximately 50% higher numbers of CFCs per femur than recipients of “BM-homed” cells. To examine whether progenitor homing was altered upon ex vivo expansion, highly enriched Sca-1+c-kit+Lin−cells were cultured for 9 days in serum-free medium containing interleukin (IL)-6, IL-11, granulocyte colony-stimulating factor, stem cell factor, flk-2/flt3 ligand, and thrombopoietin. Expanded cells were then stained with PKH26 and assayed as above. Strikingly, CFCs generated in vitro exhibited a 10-fold reduction in homing capacity compared with fresh progenitors. These studies demonstrate that clonogenic cells with differential homing properties contribute variably to early and late hematopoiesis in vivo. The dramatic decline in the homing capacity of progenitors generated in vitro underscores critical qualitative changes that may compromise their biologic function and potential clinical utility, despite their efficient numerical expansion.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
2009 ◽  
Vol 113 (12) ◽  
pp. 2661-2672 ◽  
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Dengli Hong ◽  
Neil P. Rodrigues ◽  
...  

Abstract Evidence suggests the transcription factor GATA-2 is a critical regulator of murine hematopoietic stem cells. Here, we explore the relation between GATA-2 and cell proliferation and show that inducing GATA-2 increases quiescence (G0 residency) of murine and human hematopoietic cells. In human cord blood, quiescent fractions (CD34+CD38−HoechstloPyronin Ylo) express more GATA-2 than cycling counterparts. Enforcing GATA-2 expression increased quiescence of cord blood cells, reducing proliferation and performance in long-term culture-initiating cell and colony-forming cell (CFC) assays. Gene expression analysis places GATA-2 upstream of the quiescence regulator MEF, but enforcing MEF expression does not prevent GATA-2–conferred quiescence, suggesting additional regulators are involved. Although known quiescence regulators p21CIP1 and p27KIP1 do not appear to be responsible, enforcing GATA-2 reduced expression of regulators of cell cycle such as CCND3, CDK4, and CDK6. Enforcing GATA-2 inhibited human hematopoiesis in vivo: cells with highest exogenous expression (GATA-2hi) failed to contribute to hematopoiesis in nonobese diabetic–severe combined immunodeficient (NOD-SCID) mice, whereas GATA-2lo cells contributed with delayed kinetics and low efficiency, with reduced expression of Ki-67. Thus, GATA-2 activity inhibits cell cycle in vitro and in vivo, highlighting GATA-2 as a molecular entry point into the transcriptional program regulating quiescence in human hematopoietic stem and progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document