scholarly journals Prognostic Value of Flowcytometric Minimal Residual Disease Combined with PET/CT at Multiple Time Points before and after Autologous Stem Cell Transplantation in Multiple Myeloma

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1838-1838
Author(s):  
Jingli Gu ◽  
Juan Li

Abstract Background: Multiple myeloma is a plasma cell malignancy. With the emerging novel therapy and deepening response to therapy, minimal residual disease (MRD) now has been widely accepted as the response assessment beyond complete response. New generation flow (NGF) and new generation sequencing (NGS) assess the MRD status of the bone marrow, which might result in false-negative MRD because of the well-known spatially heterogeneous and extramedullary involvement in MM. To overcome this limitations, whole body functional imaging technique such as positron emission tomography/computed tomography (PET/CT) is required. To our knowledge, there is limited data examining the prognostic value of flow MRD and FDG-PET/CT at multiple time points before and after ASCT in MM. In this study, we aimed to elucidate the prognostic valued of MRD by flow combined with PET/CT at different time points in the long-term outcomes for transplant-eligible NDMM patients. Methods: This observational cohort study was approved by the ethnic committee of Sun Yat-sen University. The inclusion criteria were 1) patients with transplant eligible NDMM; 2) received uniform induction regimen of PAD and proceeded to the following ASCT; 3) received PET/CT scan in our hospital before receiving any anti-myeloma therapy. Whole-body 18F-FDG PET/CT was carried out in all patients at baseline and was then repeated post-induction (median 38days after the completion of induction), and at 6th, 12th and 24th month post-transplant. Flow MRD status were analyzed by 8-color multiparameter flow cytometry with the sensitivity of 10 -5. Results: From July 2012 to Apr 2017, 94 consecutive patients with transplant eligible NDMM were included in the final analysis. To standardize the PET/CT interpretation, 5-points scale of Deauville score (DS) was applied to evaluate the FDG uptake of bone marrow and focal lesions together. "Flow MRD" and "PET Deauville score" were highly discordant. No matter choosing DS 1, 2 or 3 as the cutoff for PET/CT positivity, there was no significant agreement between PET/CT and flow MRD assessment after induction. At 6th and 12th month post-transplant, neither existed the significant agreement between these 2 assessments if DS 1 or 2 as the cutoff; even if DS 3 as the cutoff, the agreement degree was very poor at these early time points post-transplant. At the 24th month post-transplant, adopting DS3 as the cutoff for PET/CT positivity, the agreement degree between flow MRD and PET/CT was significantly improved to moderate level with the kappa score of 0.579. In the univariate analysis, no matter the flow MRD status was positive or negative, patients with PET DS1-2 at each time points had similar favorable TTP (table 2) whereas patients with PET DS4-5 at each time points had similar poor TTP. In the subgroup of PET DS3, as early as after the induction, patients with flow MRD-negative already show the trend of better TTP (p = .083); while at the 6th, 12th, 24th month post-transplant, patients with flow MRD - negative had significantly better TTP than those with flow MRD - positive. In the multivariate analysis (table3), the lesion DS≤4 at baseline and standard risk FISH were Independent predictive factors for TTP and the lesion DS ≤4 was the only independent predictive factor for OS. After induction and 6th month after transplant, the baseline DS were excluded from the Cox model. The post-therapy PET DS 3 might be a good cutoff value for PET/CT MRD positivity because it significantly predicted both the TTP and OS. However, since 12th month after transplant, compared to patients with DS3, those with DS 1-2 had favorably TTP. The cutoff value shifted to DS2. Conclusion: PET/CT and flow MRD are highly discordant until 2 years after transplant for patients with NDMM. Patients with low Deauville score (1-2) had good prognosis at different time points no matter the MRD status, reflecting the importance of PET/CT in evaluation the aggressive degree of MRD clone. Patients with high Deauville score (4-5) had poor prognosis at different time points no matter the MRD status, reflecting the importance of PET/CT in overcoming the uneven and extramedullary disease in MM. The Deauville score of PET/CT remained as the independent prognosis factor at post-induction, 6 th -, 12 th -, and 24 th month post-transplant. However, the cut-off value of PET/CT Deauville score shift from score 3 before 1-year post-transplant to score 2 at and beyond 1-year post-transplant. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Author(s):  
Frederic E. Lecouvet ◽  
Marie-Christiane Vekemans ◽  
Thomas Van Den Berghe ◽  
Koenraad Verstraete ◽  
Thomas Kirchgesner ◽  
...  

AbstractBone imaging has been intimately associated with the diagnosis and staging of multiple myeloma (MM) for more than 5 decades, as the presence of bone lesions indicates advanced disease and dictates treatment initiation. The methods used have been evolving, and the historical radiographic skeletal survey has been replaced by whole body CT, whole body MRI (WB-MRI) and [18F]FDG-PET/CT for the detection of bone marrow lesions and less frequent extramedullary plasmacytomas.Beyond diagnosis, imaging methods are expected to provide the clinician with evaluation of the response to treatment. Imaging techniques are consistently challenged as treatments become more and more efficient, inducing profound response, with more subtle residual disease. WB-MRI and FDG-PET/CT are the methods of choice to address these challenges, being able to assess disease progression or response and to detect “minimal” residual disease, providing key prognostic information and guiding necessary change of treatment.This paper provides an up-to-date overview of the WB-MRI and PET/CT techniques, their observations in responsive and progressive disease and their role and limitations in capturing minimal residual disease. It reviews trials assessing these techniques for response evaluation, points out the limited comparisons between both methods and highlights their complementarity with most recent molecular methods (next-generation flow cytometry, next-generation sequencing) to detect minimal residual disease. It underlines the important role of PET/MRI technology as a research tool to compare the effectiveness and complementarity of both methods to address the key clinical questions.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-2
Author(s):  
Byung Sik Cho ◽  
Dain Kang ◽  
Hoon Seok Kim ◽  
Heeje Kim ◽  
Myungshin Kim ◽  
...  

Only a few studies investigated prognostic values of next-generation sequencing-based measurable residual disease (NGS-MRD) detection in AML before or after allogeneic hematopoietic stem cell transplantation (Allo-HSCT). Moreover, NGS-MRD assessments were mostly performed only at pre-HSCT, and results were discordant. The current study longitudinally collected samples before and after Allo-HSCT and clinical data from two independent prospective cohorts (n=132) registered at ClinicalTrials.gov (NCT01751997) and CRIS (Clinical Research Information Service, KCT0002261), and investigated the role of NGS-MRD assessment. Donor groups consisted of matched sibling (23%), matched-unrelated (35%), and haploidentical familial donors (42%). Enrolled patients received myeloablative (MAC; 44%) or reduced-intensity conditioning (RIC; 56%). Customized amplicon-based targeted NGS including 67 genes (41 entire coding regions and 26 hot spots) was used and mean coverage was over 2000. With 33 months of median follow-up of survivors, 24 patients experienced post-transplant relapse. Persistent mutations were detectable at pre-HSCT (57/132, 43%) and at 1 month (23/114, 20%) after HSCT. Mutant allelic burdens at pre-HSCT and at 1 month after HSCT in relapsed patients were higher than in non-relapsed patients. Any persistent mutations at pre-HSCT and at 1 month after HSCT were significantly associated with post-transplant relapse (34.8% vs. 6.7%, p<0.001 at pre-HSCT; 43.5% vs. 13.0%, p<0.0001 at 1 month after HSCT) and worse overall survival (54.4% vs. 78.7%, p=0.010 at pre-HSCT; 44.9% vs. 76.8%, p=0.002 at 1 month after HSCT). NGS-MRD positivity was determined as complete mutational clearance by comparisons with various cutoffs of variant allele frequencies. Multivariate analysis confirmed that MRD positivity was an adverse prognostic factor for relapse and overall survival. Of note, optimal time points of NGS-MRD assay were different according to conditioning intensity. NGS-MRD detection at pre-HSCT was significantly associated with higher relapse in those who received MAC, while NGS-MRD detection at 1 month after HSCT was in those who received RIC. We also found that MRD positivity in genes related with clonal hematopoiesis were also significantly associated with post-transplant relapse. Serial NGS-MRD monitoring after HSCT revealed that most residual clones of false positive patients at pre-HSCT and at 1 month after HSCT were disappeared within 3 months after HSCT. At relapse, NGS showed not only clonal expansion or reappearing but also evolution of new clones. The current study demonstrated that NGS-MRD assessment both at pre-HSCT and at 1 month after HSCT were useful for predicting post-transplant relapse and there were no differences according to type of mutations. Optimal time points of NGS-MRD assessment depend on conditioning intensity. Disclosures Kim: Chugai: Consultancy, Honoraria; Daiichi Sankyo: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Hanmi: Consultancy, Honoraria; BL&H: Research Funding; AbbVie: Honoraria; Amgen Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; SL VaxiGen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; AML Global Portal: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Yuhan: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi-Genzyme: Honoraria.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabri Eyuboglu ◽  
Geoffrey Angus ◽  
Bhavik N. Patel ◽  
Anuj Pareek ◽  
Guido Davidzon ◽  
...  

AbstractComputational decision support systems could provide clinical value in whole-body FDG-PET/CT workflows. However, limited availability of labeled data combined with the large size of PET/CT imaging exams make it challenging to apply existing supervised machine learning systems. Leveraging recent advancements in natural language processing, we describe a weak supervision framework that extracts imperfect, yet highly granular, regional abnormality labels from free-text radiology reports. Our framework automatically labels each region in a custom ontology of anatomical regions, providing a structured profile of the pathologies in each imaging exam. Using these generated labels, we then train an attention-based, multi-task CNN architecture to detect and estimate the location of abnormalities in whole-body scans. We demonstrate empirically that our multi-task representation is critical for strong performance on rare abnormalities with limited training data. The representation also contributes to more accurate mortality prediction from imaging data, suggesting the potential utility of our framework beyond abnormality detection and location estimation.


2021 ◽  
Vol 13 (15) ◽  
pp. 3042
Author(s):  
Kateřina Gdulová ◽  
Jana Marešová ◽  
Vojtěch Barták ◽  
Marta Szostak ◽  
Jaroslav Červenka ◽  
...  

The availability of global digital elevation models (DEMs) from multiple time points allows their combination for analysing vegetation changes. The combination of models (e.g., SRTM and TanDEM-X) can contain errors, which can, due to their synergistic effects, yield incorrect results. We used a high-resolution LiDAR-derived digital surface model (DSM) to evaluate the accuracy of canopy height estimates of the aforementioned global DEMs. In addition, we subtracted SRTM and TanDEM-X data at 90 and 30 m resolutions, respectively, to detect deforestation caused by bark beetle disturbance and evaluated the associations of their difference with terrain characteristics. The study areas covered three Central European mountain ranges and their surrounding areas: Bohemian Forest, Erzgebirge, and Giant Mountains. We found that vertical bias of SRTM and TanDEM-X, relative to the canopy height, is similar with negative values of up to −2.5 m and LE90s below 7.8 m in non-forest areas. In forests, the vertical bias of SRTM and TanDEM-X ranged from −0.5 to 4.1 m and LE90s from 7.2 to 11.0 m, respectively. The height differences between SRTM and TanDEM-X show moderate dependence on the slope and its orientation. LE90s for TDX-SRTM differences tended to be smaller for east-facing than for west-facing slopes, and varied, with aspect, by up to 1.5 m in non-forest areas and 3 m in forests, respectively. Finally, subtracting SRTM and NASA DEMs from TanDEM-X and Copernicus DEMs, respectively, successfully identified large areas of deforestation caused by hurricane Kyril in 2007 and a subsequent bark beetle disturbance in the Bohemian Forest. However, local errors in TanDEM-X, associated mainly with forest-covered west-facing slopes, resulted in erroneous identification of deforestation. Therefore, caution is needed when combining SRTM and TanDEM-X data in multitemporal studies in a mountain environment. Still, we can conclude that SRTM and TanDEM-X data represent suitable near global sources for the identification of deforestation in the period between the time points of their acquisition.


2016 ◽  
Vol 85 (2) ◽  
pp. 459-465 ◽  
Author(s):  
Lino M. Sawicki ◽  
Johannes Grueneisen ◽  
Benedikt M. Schaarschmidt ◽  
Christian Buchbender ◽  
James Nagarajah ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jingjie Shang ◽  
Zhiqiang Tan ◽  
Yong Cheng ◽  
Yongjin Tang ◽  
Bin Guo ◽  
...  

Abstract Background Standardized uptake value (SUV) normalized by lean body mass ([LBM] SUL) is recommended as metric by PERCIST 1.0. The James predictive equation (PE) is a frequently used formula for LBM estimation, but may cause substantial error for an individual. The purpose of this study was to introduce a novel and reliable method for estimating LBM by limited-coverage (LC) CT images from PET/CT examinations and test its validity, then to analyse whether SUV normalised by LC-based LBM could change the PERCIST 1.0 response classifications, based on LBM estimated by the James PE. Methods First, 199 patients who received whole-body PET/CT examinations were retrospectively retrieved. A patient-specific LBM equation was developed based on the relationship between LC fat volumes (FVLC) and whole-body fat mass (FMWB). This equation was cross-validated with an independent sample of 97 patients who also received whole-body PET/CT examinations. Its results were compared with the measurement of LBM from whole-body CT (reference standard) and the results of the James PE. Then, 241 patients with solid tumours who underwent PET/CT examinations before and after treatment were retrospectively retrieved. The treatment responses were evaluated according to the PE-based and LC-based PERCIST 1.0. Concordance between them was assessed using Cohen’s κ coefficient and Wilcoxon’s signed-ranks test. The impact of differing LBM algorithms on PERCIST 1.0 classification was evaluated. Results The FVLC were significantly correlated with the FMWB (r=0.977). Furthermore, the results of LBM measurement evaluated with LC images were much closer to the reference standard than those obtained by the James PE. The PE-based and LC-based PERCIST 1.0 classifications were discordant in 27 patients (11.2%; κ = 0.823, P=0.837). These discordant patients’ percentage changes of peak SUL (SULpeak) were all in the interval above or below 10% from the threshold (±30%), accounting for 43.5% (27/62) of total patients in this region. The degree of variability is related to changes in LBM before and after treatment. Conclusions LBM algorithm-dependent variability in PERCIST 1.0 classification is a notable issue. SUV normalised by LC-based LBM could change PERCIST 1.0 response classifications based on LBM estimated by the James PE, especially for patients with a percentage variation of SULpeak close to the threshold.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 336
Author(s):  
Byung-Sik Cho ◽  
Gi-June Min ◽  
Sung-Soo Park ◽  
Silvia Park ◽  
Young-Woo Jeon ◽  
...  

The prognostic significance of KIT mutations and optimal thresholds and time points of measurable residual disease (MRD) monitoring for acute myeloid leukemia (AML) with RUNX1-RUNX1T1 remain controversial in the setting of hematopoietic stem cell transplantation (HSCT). We retrospectively evaluated 166 high-risk patients who underwent allogeneic (Allo-HSCT, n = 112) or autologous HSCT (Auto-HSCT, n = 54). D816V KIT mutation, a subtype of exon 17 mutations, was significantly associated with post-transplant relapse and poor survival, while other types of mutations in exons 17 and 8 were not associated with post-transplant relapse. Pre- and post-transplant RUNX1–RUNX1T1 MRD assessments were useful for predicting post-transplant relapse and poor survival with a higher sensitivity at later time points. Survival analysis for each stratified group by D816V KIT mutation and pre-transplant RUNX1–RUNX1T1 MRD status demonstrated that Auto-HSCT was superior to Allo-HSCT in MRD-negative patients without D816V KIT mutation, while Allo-HSCT was superior to Auto-HSCT in MRD-negative patients with D816V KIT mutation. Very poor outcomes of pre-transplant MRD-positive patients with D816V KIT mutation suggested that this group should be treated in clinical trials. Risk stratification by both D816V KIT mutation and RUNX1–RUNX1T1 MRD status will provide a platform for decision-making or risk-adapted therapeutic approaches.


2020 ◽  
Vol 50 (1) ◽  
pp. 249-254
Author(s):  
Miho Sasaki ◽  
Yuka Hotokezaka ◽  
Reiko Ideguchi ◽  
Masataka Uetani ◽  
Shuichi Fujita

AbstractMyositis ossificans (MO) is a benign soft-tissue lesion characterized by the heterotopic formation of the bone in skeletal muscles, usually due to trauma. MO is occasionally difficult to diagnose because of its clinical and radiological similarities with malignancy. We report a case of traumatic MO (TMO) in the masseter and brachial muscles of a 37-year-old man who presented with painless swelling in the left cheek and severe trismus. Due to the absence of a traumatic history at the first consultation and identification of a tumorous lesion in the left masseter muscle by magnetic resonance imaging (MRI), the lesion was suspected to be a malignant tumor. Subsequently, 18F-fluorodeoxyglucose positron-emission tomography/computed tomography (FDG-PET/CT) showed multiple regions of high FDG uptake across the whole body, suggestive of multiple metastases or other systemic diseases. However, intramuscular calcifications were also observed in the left masseter and brachial muscles, overlapping the areas with high FDG uptake. Moreover, multiple fractures were seen in the rib and lumbar spine, also overlapping the areas with high FDG uptake. Based on these imaging findings, along with a history of jet-ski trauma, TMO was suspected. The left cheek mass was surgically excised and histologically diagnosed as TMO. In this case report, FDG-PET/CT could detect multiple TMOs across the whole body. To the best of our knowledge, cases of multiple TMOs located far apart in different muscles are rare, and this may be the first report.


Sign in / Sign up

Export Citation Format

Share Document