scholarly journals Functional Multi-Omics Reveals Genetic and Pharmacologic Regulation of Surface CD38 in Multiple Myeloma

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2648-2648
Author(s):  
Priya Choudhry ◽  
Olivia Gugliemini ◽  
Huimin Geng ◽  
Vishesh Sarin ◽  
Letitia Sarah ◽  
...  

Abstract Background: CD38 is a surface ectoenzyme expressed at high levels on myeloma plasma cells and is the target for the monoclonal antibodies (mAbs) daratumumab and isatuximab. These antibodies have multiple mechanisms of action, primarily involving recruiting and modulating components of the immune system, but they may also carry direct anti-tumor effects. CD38 density on tumor cells is an important determinant of mAb efficacy while CD38 is lost after mAb treatment. Several small molecules have been found to increase tumor surface CD38, with the goal of boosting mAb efficacy in a co-treatment strategy. However, we do not yet have a broad global sense of the transcriptional or post-transcriptional networks that most strongly impact CD38 expression. There may be alternate strategies to even more potently increase CD38 expression that have not yet been identified. Furthermore, prior clinical studies showed that CD38 downregulation after daratumumab treatment was accompanied by increases in the complement inhibitors CD55 and CD59. Are there other features of myeloma surface remodeling driven by CD38 downregulation? Here we sought to extend our currently limited insight into CD38 surface expression by using a multi-omics approach. Methods: Genome-wide CRISPR interference screening was performed in RPMI-8226 cells stably expressing the dCas9-KRAB fusion protein. Cells were grown for 14 days after library transduction, flow-sorted on the top and bottom 25% of CD38 surface expression, and sgRNA's deep sequenced. Antibody-dependent cellular cytoxicity assays were performed with NK92-CD16 cells. Cell surface proteomics was performed using N-glycoprotein cell surface capture in triplicate. Phosphoproteomics was performed used immobilized metal affinity chromatography in triplicate. Murine studies were performed in NSG mice under approved IACUC-approved institutional protocols. Results: A genome-wide CRISPR-interference screen in RPMI-8226 cells demonstrated that transcriptional and epigenetic factors played the most prominent role in surface CD38 regulation (Fig. 1A). One of the genes that when knocked down led to greatest surface CD38 increase was RARA. This finding supports the promise of all-trans retinoic acid (ATRA), which leads to RARA degradation, as a potent agent to induce CD38 upregulation. Validation of additional screen hits TLE3 and HEXIM1 also illustrated that these negative regulatory transcription factors suppress CD38 expression at baseline (not shown). We found the transcription factor SPI1 to be a prominent positive regulator of CD38. SPI1 knockdown led to daratumumab resistance both in vitro and in vivo, similar to the resistance observed after CD38 knockdown (not shown). Analysis of myeloma patient ATAC-seq data, assessing transcription factor motifs present at the CD38 locus, combined with a predictive machine learning model, further identified XBP1 as one of the most potent transcriptional regulators of CD38 (Fig. 1B). We next used "antigen escape profiling" - knockdown of CD38 followed by unbiased cell surface proteomics - to mimic surface alterations in the context of CD38 loss. We found minimal changes in other cell surface proteins beyond CD38 (Fig. 1C), indicating the CD38 loss alone is not sufficient to remodel the myeloma surfaceome. This finding also supports the hypothesis that complement or other immune system interactions are necessary to lead to other myeloma surface protein alterations. In a parallel analysis of pharmacologic regulation, we also used cell surface proteomics integrated with RNA-seq to demonstrate that ATRA leads to few other surface protein changes beyond CD38 (not shown). In contrast, other molecules, such as azacytidine and panobinostat, led to broader changes across many more surface proteins, showing a lack of specificity when driving CD38 upregulation. Finally, unbiased phosphoproteomics revealed partial inhibition of the MAP kinase pathway after daratumumab binding (Fig. 1D). This result may comprise a direct anti-proliferative effect of anti-CD38 therapeutic antibody engagement in myeloma. Conclusions: Our work provides a resource to design strategies to enhance efficacy of CD38-targeting immunotherapies in myeloma. Our approach also outlines a broad multi-omic strategy to evaluate surface and transcriptional regulation of other key immunotherapeutic targets in hematologic malignancies. Figure 1 Figure 1. Disclosures Choudhry: Genentech: Current Employment, Current equity holder in publicly-traded company. Ramkumar: Senti Biosciences: Current Employment, Current holder of individual stocks in a privately-held company.

2021 ◽  
Author(s):  
Liqun Luo ◽  
Qijing Xie ◽  
Jiefu Li ◽  
Hongjie Li ◽  
Namrata Udeshi ◽  
...  

Abstract Transcription factors are central commanders specifying cell fate, morphology, and physiology while cell-surface proteins execute these commands through interaction with cellular environment. In developing neurons, it is presumed that transcription factors control wiring specificity through regulation of cell-surface protein expression. However, the number and identity of cell-surface protein(s) a transcription factor regulates remain largely unclear1,2. Also unknown is whether a transcription factor regulates the same or different cell-surface proteins in different neuron types to specify their connectivity. Here we use a lineage-defining transcription factor, Acj6 (ref. 3), to investigate how it controls precise dendrite targeting of Drosophila olfactory projection neurons (PNs). Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion proteins and proteins previously not associated with wiring, such as the mechanosensitive ion channel Piezo—whose channel activity is dispensable for its wiring function. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combinatorial expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, a key transcription factor controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


2021 ◽  
Author(s):  
Qijing Xie ◽  
Jiefu Li ◽  
Hongjie Li ◽  
Namrata D Udeshi ◽  
Tanya Svinkina ◽  
...  

Transcription factors are central commanders specifying cell fate, morphology, and physiology while cell-surface proteins execute these commands through interaction with cellular environment. In developing neurons, it is presumed that transcription factors control wiring specificity through regulation of cell-surface protein expression. However, the number and identity of cell-surface protein(s) a transcription factor regulates remain largely unclear1,2. Also unknown is whether a transcription factor regulates the same or different cell-surface proteins in different neuron types to specify their connectivity. Here we use a lineage-defining transcription factor, Acj6 (ref. 3), to investigate how it controls precise dendrite targeting of Drosophila olfactory projection neurons (PNs). Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion proteins and proteins previously not associated with wiring, such as the mechanosensitive ion channel Piezo–whose channel activity is dispensable for its wiring function. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combinatorial expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, a key transcription factor controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


2013 ◽  
Vol 109 (02) ◽  
pp. 309-318 ◽  
Author(s):  
Loredana Rinaldi ◽  
Vincenza Elena Anna Rea ◽  
Nunzia Montuori ◽  
Vincenzo Cosimato ◽  
Daniela Alfano ◽  
...  

SummaryThe expression of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR) can be regulated by several hormones, cytokines, and tumour promoters. uPAR is a glycosyl-phosphatidyl inositol (GPI)- linked cell-surface protein; however, it is capable to transduce signals inside the cell by interacting with other cell-surface proteins, such as integrins and G-protein coupled (GPC) receptors. We previously reported that uPAR cell-surface expression can be positively regulated by its ligand, uPA, independently of its proteolytic activity. We now demonstrate that uPAR overexpression induces or increases uPA secretion both in uPAR-negative and in uPAR-expressing cells. Accordingly, uPAR depletion impairs uPA expression in cells which constitutively express both uPA and its receptor. uPAR exerts its regulatory effect through the activation of the ERK mitogen-activated protein kinases (MAPKs), whereas the p-38 MAPK is not involved. Overexpression of truncated forms of uPAR, lacking the N-terminal domain (DI) and not able to interact with membrane co-receptors, failed to increase uPA expression. Inhibition of uPAR-integrin interaction by the specific P-25 peptide, as well as Gi-protein inhibition by cholera pertussin toxin or depletion of the GPC receptors for fMLF (fMLF-Rs) also impaired uPAR capability to regulate uPA expression. These findings demonstrate that uPAR, whose expression is regulated by uPA, can, in turn, regulate uPA expression through a mechanism involving its functional interaction with integrins and fMLF-Rs.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1803-1803
Author(s):  
Ian Ferguson ◽  
Yu-Hsiu T. Lin ◽  
Sami Tuomivaara ◽  
Jeffrey L. Wolf ◽  
Thomas G. Martin ◽  
...  

Introduction: Proteasome inhibitor (PI) resistance remains a major clinical challenge in multiple myeloma (MM). As the proteasome plays a central role in cellular protein homeostasis, we hypothesized both PI treatment and resistance might rewire protein transport and recycling pathways, thereby leading to broad changes in cell surface protein expression. Defining the cell surface proteome has become increasingly important in MM to quantify immunotherapy target expression, identify potential biomarkers of drug response or resistance, and reveal proteins mediating interaction with the tumor microenvironment. Unbiased mass spectrometry approaches allow for profiling of hundreds of surface proteins simultaneously, allowing for novel protein discovery and extending beyond the limits of flow or mass cytometry. Methods: PI-resistant cells derived from cell lines AMO-1, L363, and RPMI-8226, and ARH-77 were grown in 90nM Bortezomib or Carfilzomib as previously described (Soriano et al, Leukemia (2016)). N-glycoproteomics was performed in triplicate on PI-resistant and parental lines. Briefly, glycosylated cell surface proteins were biotinylated prior to enrichment with Neutravidin beads and downstream LC-MS analysis. For perturbation studies, AMO-1 and RPMI-8226 cells were treated for 48 hours with Bortezomib, Lenalidomide, or CB-5083 prior to N-glycoproteomics. Flow cytometry was performed to validate surface protein abundance changes in PI-resistant lines, as well as with MM cell lines and ex vivo MM patient bone marrow mononuclear cells (PBMCs) treated with bortezomib and lenalidomide. For ex vivo MM patient cell surface proteomics, plasma cells were isolated from PBMCs with anti-CD138 magnetic beads prior to N-glycoproteomic analysis. Mass spectrometry data was analyzed in Maxquant and statistical analysis was performed in Perseus and R. Results: Supporting our hypothesis, we found that the MM surfaceome is broadly re-wired in the PI-resistant state. Using N-glycoproteomics, we identified EVI2B, CD53, CD50, and ITGB7 as downregulated and CD151, CD10, and SERC3 as upregulated in PI-resistant myeloma cell lines (up and downregulated defined as at least a +/- log2 fold change of 1.5 and p < .05). Notably, ITGB7 is under development as an immunotherapy target for MM (Hosen et al, Nat Med (2017)). To understand how surface remodeling in the PI-resistant state compares with short-term exposure to PI, we treated MM cells with bortezomib and again found broad surfaceome remodeling, including loss of immunotherapy target BCMA. We identified GITR, CD53, and ITGB7, among other proteins, as downregulated in both bortezomib-exposed and PI-resistant MM, suggesting that expression of proteins involved in therapeutic resistance might be rapidly modulated in initial cycles of therapy. To compare surfaceome changes identified in PI-exposure and resistance and those seen under anti-MM therapeutics with alternative mechanisms of action, we performed N-glycoproteomics on MM cells treated with the clinical immunomodulating agent Lenalidomide and the cytotoxic p97/VCP inhibitor CB-5083. Interestingly, we found MUC1, a proposed myeloma oncoprotein, to be upregulated under lenalidomide in AMO-1 but downregulated in the PI-resistant state. We validated surface protein abundance changes in PI-resistant MM cell lines and drug-treated MM cell lines or ex-vivo MM patient samples by flow cytometry. For additional validation, we are currently optimizing methods for N-glycoproteomics on CD138+ cells isolated from primary MM patient bone marrow aspirates. Initial results suggest several markers identified in cell lines are also highly expressed in primary PI-resistant MM. Conclusions: Unbiased N-glycoproteomics reveals broad cell surface protein remodeling in PI-resistant MM. Short-term treatment with bortezomib or lenalidomide also leads to significant surface alterations, with differential expression of proteins including MUC1, GITR, and BCMA potentially playing a role in drug resistance and informing rational combination with immunotherapies. Disclosures Martin: Roche and Juno: Consultancy; Amgen, Sanofi, Seattle Genetics: Research Funding. Wong:Celgene: Research Funding; Janssen: Research Funding; Roche: Research Funding; Fortis: Research Funding. Wiita:Indapta Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Protocol Intelligence: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; UCSF: Patents & Royalties.


1986 ◽  
Vol 6 (9) ◽  
pp. 3240-3245
Author(s):  
G A Bannon ◽  
R Perkins-Dameron ◽  
A Allen-Nash

The presence of specific proteins (known as immobilization antigens) on the surface of the ciliated protozoan Tetrahymena thermophila is under environmental regulation. There are five different classes (serotypes) of surface proteins which appear on the cell surface when T. thermophila is cultured under different conditions of temperature or incubation medium; three of these are temperature dependent. The appearance of these proteins on the cell surface is mutually exclusive. We used polyclonal antibodies raised against 30 degrees C (designated SerH3)- and 40 degrees C (designated SerT)-specific surface antigens to study their structure and expression. We showed that these surface proteins contain at least one disulfide bridge. On sodium dodecyl sulfate-denaturing polyacrylamide gels, the nonreduced 30 degrees C- and 40 degrees C-specific surface proteins migrated with molecular sizes of 69 and 36 kilodaltons, respectively. The reduced forms of the proteins migrated with molecular sizes of 58 and 30 kilodaltons, respectively. The synthesis of the surface proteins responded rapidly and with a time course similar to that of the incubation temperature. The synthesis of each surface protein was greatly reduced within 1 h and undetectable by 2 h after a shift to the temperature at which the protein is not expressed. Surface protein synthesis resumed by the end of 1 h after a shift to the temperature at which the protein is expressed. The temperature-dependent induction of these surface proteins appears to be dependent on the synthesis of new mRNA, as indicated by a sensitivity to actinomycin D. Surface protein syntheses were mutually exclusive except at a transition temperature. At 35 degrees C both surface proteins were synthesized by a cell population. These data support the potential of this system as a model for the study of the effects of environmental factors on the genetic regulation of cell surface proteins.


2018 ◽  
Vol 115 (41) ◽  
pp. E9717-E9726 ◽  
Author(s):  
Hourinaz Behesti ◽  
Taylor R. Fore ◽  
Peter Wu ◽  
Zachi Horn ◽  
Mary Leppert ◽  
...  

Surface protein dynamics dictate synaptic connectivity and function in neuronal circuits. ASTN2, a gene disrupted by copy number variations (CNVs) in neurodevelopmental disorders, including autism spectrum, was previously shown to regulate the surface expression of ASTN1 in glial-guided neuronal migration. Here, we demonstrate that ASTN2 binds to and regulates the surface expression of multiple synaptic proteins in postmigratory neurons by endocytosis, resulting in modulation of synaptic activity. In cerebellar Purkinje cells (PCs), by immunogold electron microscopy, ASTN2 localizes primarily to endocytic and autophagocytic vesicles in the cell soma and in subsets of dendritic spines. Overexpression of ASTN2 in PCs, but not of ASTN2 lacking the FNIII domain, recurrently disrupted by CNVs in patients, including in a family presented here, increases inhibitory and excitatory postsynaptic activity and reduces levels of ASTN2 binding partners. Our data suggest a fundamental role for ASTN2 in dynamic regulation of surface proteins by endocytic trafficking and protein degradation.


1969 ◽  
Vol 4 (2) ◽  
pp. 289-298
Author(s):  
P. D. WARD ◽  
E. J. AMBROSE

The electrophoretic characteristics of the murine CL3 ascites tumour were investigated. Treatment of the cells with formaldehyde raised the electrophoretic mobility (E.P.M.) from - 1.06 to - 1.28 µ/sec/V/cm; subsequent treatment with diazomethane reduced their mobility to zero. The E.P.M. of the diazomethane-treated cells did not alter over the pH range 3.0-8.0. This proved that the only ionic groups at this cell surface were amino and carboxyl groups. The absence of phosphate groups, another possibility, was confirmed by the lack of calcium-ion binding from 10 mM Ca2+ solutions. Neuraminidase treatment reduced the E.P.M. from -1.06 to -0.55 µ/sec/V/cm and free sialic acid was identified in the enzyme supernatant. Subsequent treatment of the cells with formaldehyde raised the mobility to -1.22 µ/sec/V/cm indicating that the change in E.P.M. on neuraminidase treatment was not due solely to the removal of the carboxyl groups of sialic acid but also to a change in the ionic nature of the surface. This change is ascribed to a change in the conformation of the surface protein. The reason for this change and a suggestion for the possible role of sialic acid at the cell surface are mentioned. Treatment of the cells with trypsin did not affect the viable cells in any way, suggesting that the surface proteins lack the basic amino acids lysine and arginine. Pronase treatment served only to show that much of the sialic acid was bound to protein; the total amount was not determined.


Open Biology ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 180079
Author(s):  
Monika Stegmann ◽  
A. Neil Barclay ◽  
Clive Metcalfe

Communication through cell surface receptors is crucial for maintaining immune homeostasis, coordinating the immune response and pathogen clearance. This is dependent on the interaction of cell surface receptors with their ligands and requires functionally active conformational states. Thus, immune cell function can be controlled by modulating the structure of either the receptor or the ligand. Reductive cleavage of labile disulfide bonds can mediate such an allosteric change, resulting in modulation of the immune system by a hitherto little studied mechanism. Identifying proteins with labile disulfide bonds and determining the extent of reduction is crucial in elucidating the functional result of reduction. We describe a mass spectrometry-based method—thiol identification and quantitation (SH-IQ)—to identify, quantify and monitor such reduction of labile disulfide bonds in primary cells during immune activation. These results provide the first insight into the extent and dynamics of labile disulfide bond reduction in leucocyte cell surface proteins upon immune activation. We show that this process is thiol oxidoreductase-dependent and mainly affects activatory (e.g. CD132, SLAMF1) and adhesion (CD44, ICAM1) molecules, suggesting a mechanism to prevent over-activation of the immune system and excessive accumulation of leucocytes at sites of inflammation.


2009 ◽  
Vol 21 (1) ◽  
pp. 241
Author(s):  
K. J. Williams ◽  
R. A. Godke ◽  
K. R. Bondioli

Human adipose tissue-derived adult stem (ADAS) cells are a self-renewing population of cells with a multilineage plasticity similar to bone marrow-derived mesenchymal stem cells. Human ADAS have promise for use in combination with various biomaterials for reconstructive tissue engineering. The phenotypic profile of human ADAS cell surface proteins has been partially characterized for stem cell-associated cluster differentiation molecules including CD29, CD44, and CD90. Porcine ADAS cells, an animal model for tissue engineering, also have the ability to self-renew and differentiate into multiple tissue lineages. However, the surface protein phenotype has not been described. Because porcine ADAS are isolated from fat depots likely different from human ADAS liposuction aspirates, it is important to characterize these cells. In this study, we have partially characterized the surface protein phenotype of undifferentiated porcine ADAS cells in comparison with the immunophenotype of undifferentiated human ADAS cells as reported in the literature. Flow cytometry and enhanced chemiluminescence Western blot analysis of early passage (passages 0–4) porcine ADAS cell populations demonstrated that the profiles are not similar to the human ADAS cell surface. Immunoblot detection paired with an enhanced chemiluminescence kit revealed a positive expression for CD44 and CD90 in human ADAS cells as indicated by bands present at the expected sizes and a negative expression for CD44 and CD90 in porcine ADAS cells. Flow cytometric analysis also indicated differences between human and early passage porcine ADAS cell surfaces with a relatively low expression of CD29 (5 cell lines with a mean percent positive of 4.5 ± 1.7 and a range of 2.5–7.2%) and CD44 (5 cell lines with a mean percent positive of 0.66 ± 0.67 and a range of 0.0–1.8%) compared with human ADAS values of 98 ± 1 and 60 ± 15, respectively (Gronthos et al. 2001). Other cell surface proteins analyzed at early passages include CD3 (3 cell lines; 0.07 ± 0.06% positive and 0.0–0.1 range), CD8 (3 cell lines; 0.10 ± 0.10% positive and 0–0.2 range), and CD90 [5 cell lines; 12.7 ± 11.9% positive and 2.4–33 range; human ADAS geometric mean 25.96% (Zuk et al. 2002)]. Analysis of late passage (passages 5–11) porcine ADAS cell populations revealed an increased expression of CD29 (3 cell lines; 26.4 ± 7.2% positive and 21.2–34.6 range). The expression level of CD90 at late passages were 21.3 and 26.9% positive for 2 cell lines and CD44 remained low (3 cell lines; 4.1 ± 3.5% positive and 0.2–7.0 range). Later passages were also analyzed for c-Kit (CD117), which was expressed at low levels (2 cell lines; 0.3 and 0.4% positive). The characterization of adipose tissue-derived adult stem cell surface proteins present at different stages of in vitro culture from a model animal, such as the pig, could have valuable impacts on tissue engineering research. These results suggest that care should be taken when interpreting results from animal models of somatic stem cells.


2018 ◽  
Vol 115 (46) ◽  
pp. E10988-E10997 ◽  
Author(s):  
Damaris Bausch-Fluck ◽  
Ulrich Goldmann ◽  
Sebastian Müller ◽  
Marc van Oostrum ◽  
Maik Müller ◽  
...  

Cell-surface proteins are of great biomedical importance, as demonstrated by the fact that 66% of approved human drugs listed in the DrugBank database target a cell-surface protein. Despite this biomedical relevance, there has been no comprehensive assessment of the human surfaceome, and only a fraction of the predicted 5,000 human transmembrane proteins have been shown to be located at the plasma membrane. To enable analysis of the human surfaceome, we developed the surfaceome predictor SURFY, based on machine learning. As a training set, we used experimentally verified high-confidence cell-surface proteins from the Cell Surface Protein Atlas (CSPA) and trained a random forest classifier on 131 features per protein and, specifically, per topological domain. SURFY was used to predict a human surfaceome of 2,886 proteins with an accuracy of 93.5%, which shows excellent overlap with known cell-surface protein classes (i.e., receptors). In deposited mRNA data, we found that between 543 and 1,100 surfaceome genes were expressed in cancer cell lines and maximally 1,700 surfaceome genes were expressed in embryonic stem cells and derivative lines. Thus, the surfaceome diversity depends on cell type and appears to be more dynamic than the nonsurface proteome. To make the predicted surfaceome readily accessible to the research community, we provide visualization tools for intuitive interrogation (wlab.ethz.ch/surfaceome). The in silico surfaceome enables the filtering of data generated by multiomics screens and supports the elucidation of the surfaceome nanoscale organization.


Sign in / Sign up

Export Citation Format

Share Document