scholarly journals A Novel and Successful Patient or Donor-Derived CD7-Targeted CAR T-Cell Therapy for Relapsed or Refractory T-Cell Lymphoblastic Lymphoma (R/R T-LBL)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 652-652
Author(s):  
Junfang Yang ◽  
Xiao Yang ◽  
Ying Liu ◽  
Qinglong Wang ◽  
Hui Wang ◽  
...  

Abstract Background T-cell lymphoblastic lymphoma is an aggressive hematological malignancy, often presenting with bulky mediastinal masses or diffuse extramedullary disease (EMD). There is evidence that T-LBL differs in various aspects from T-cell acute lymphoblastic leukemia in addition to differences in clinical presentation of diseases. To date, there are only a few clinical case reports of CAR-T therapy for T-LBL. Here, we explored the efficacy and safety of CD7-targeted CAR-T cells (CD7CAR) for R/R T-LBL in a phase I clinical trial (NCT04916860). Methods Eligible R/R T-LBL patients were enrolled between November 2020 and May 2021. Peripheral blood (PB) mononuclear cells were collected from either the donor (n=1) or patients (n=7) by leukapheresis. The CD7-CAR gene was obtained by gene synthesis and then ligated into a lentiviral vector by molecular cloning. We developed second-generation CAR-T cells with an intracellular co-stimulatory domain of 4-1BB and CD3ζ targeting CD7. Intravenous fludarabine (30 mg/m 2/d) and cyclophosphamide (300 mg/m 2/d) were given to all patients on Day -5 to Day -3 prior to CD7CAR infusion. Results Patient characteristics are summarized in Table 1. Eight R/R T-LBL patients were enrolled with a median age of 37 years (14-47 years) and a median of 5 prior lines of therapies (2-10 lines). Two patients had a history of central nervous system involvement. Two patients relapsed from a previous allogenic (N=1) or autologous (N=1) hematopoietic stem cell transplantation (HSCT). Four patients expressed high-risk genotypes including TP53, EZH2 and RUNX1. At enrollment, 7 patients had EMD relapse (diffuse involvement, N=5; bulky mediastinal masses, N=2). One patient had no EMD involvement at enrollment due to a prior palliative mediastinal radiotherapy, but relapsed with bone marrow (BM) blasts up to 87.27%. A total of 5/8 patients had BM blasts at enrollment with median BM blasts of 17%. Both patient- and donor-derived CD7CAR-T cells were successfully generated with a transfection efficiency of 86.55% (27%-98%). A single dose of CD7CAR-T cells was infused to patients at low dose (5x10 5 cells/kg, N=1), medium dose (1x10 6 cells/kg, N=6) or high dose (2x10 6 cells/kg, N=1). The median follow-up time was of 93 days (55-166 days) by July 18, 2021, the cutoff date. Following CD7CAR infusion, 5/5 patients who had prior BM blasts achieved minimal residual disease negative (MRD-) complete remission with incomplete hematologic recovery (CRi) on Day 28, among whom 3 had already achieved MRD- CRi on Day 14. The 3 patients who did not have BM blasts prior to CAR-T infusion maintained zero BM blasts post infusion. Of the 7 patients who had EMD involvements, 4 achieved EMD CR on Day 28, and 1 on Day 51. Of the 2 patients who had bulky mediastinal masses (~7 or 6 cm), 1 had partial response and 1 had stable disease on Day 28, respectively. Of all patients, 6 subsequently underwent allo-HSCT following CD7CAR-T infusion with a median time of 54 days (42-56 days), without relapse or progression. One patient with an allo-HSCT prior to CD7CAR infusion died after receiving a second haploidentical allo-HSCT due to acute graft-versus-host disease. The other 2 patients who did not receive a transplant were on Day 55 and 73 post CD7CAR infusion with ongoing remission by the cutoff date. Mild cytokine release syndrome (CRS, ≤Grade 2) was observed in 7/8 patients. Only 1/8 patient had Grade 3 CRS and Grade 1 neurotoxicity. The median onset of CRS was 1 day post infusion (0-15 days) with a median duration of 16 days (5-19 days). CD7CAR expansion in vivo occurred as early as 3.5 days (0-11 days) post infusion and reached a median peak of 2.07x10 5 copies/ug DNA (0.75-5.36 x10 5 copies/ug DNA) at a median of 19 days (13-28 days), and was still detectable up to the last follow-up, with a median duration of 50 days (26-120 days), as measured by qPCR (Figure.1). Conclusion Our clinical trial showed that CD7CAR-T cells derived either from the patients or the donor have a high initial efficacy and a good safety profile in R/R T-LBL patients. Initial high CR could be achieved both intramedullary and extramedullary in the majority of patients, even among those who harbored with high-risk features or had diffuse extramedullary lesions. However, patients with bulky mediastinal masses may require more than one-month time to achieve remission. Long-term observation and more patients are needed to further evaluate the safety and efficacy of CD7CAR. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 681-681 ◽  
Author(s):  
Natalie S Grover ◽  
Steven I Park ◽  
Anastasia Ivanova ◽  
Paul Eldridge ◽  
Kathryn McKay ◽  
...  

Abstract Background: Infusion of chimeric antigen receptor modified T cells targeting the CD30 molecule and encoding the CD28 endodomain (CD30.CAR-Ts) in the absence of lymphodepleting chemotherapy has been shown to be safe with responses seen in patients (pts) with relapsed/refractory (r/r) CD30+ lymphomas (Ramos et al., JCI 2017). We present here the results of a phase 1b/2 trial of CD30.CAR-Ts administered after lymphodepleting chemotherapy in pts with r/r CD30+ Hodgkin (HL) and Non-Hodgkin lymphoma (NHL). Methods: The primary objective of the phase 1b portion of the study was to determine the recommended phase 2 dose level (RP2DL) of CD30.CAR-Ts using a standard 3+3 design. Two dose levels were tested: 1 x 108 CAR-Ts/m2 (DL1) and 2 x 108 CAR-Ts/m2 (DL2). For lymphodepletion, the first 8 pts (including the first 3 pts treated at DL1) received 2 days of bendamustine (benda) 90 mg/m2, while the 10 remaining pts received 3 days of benda 70 mg/m2 and fludarabine (flu) 30 mg/m2, except for one pt who received only 1 day of benda and flu due to possible benda toxicity. Inclusion criteria were age ≥ 18 years, CD30+ disease, and r/r HL or NHL having failed ≥2 prior therapies. Results: At the time of data cut off (7/1/2018), 18 pts with a median age of 40.5 years (range: 23-70) had received CD30.CAR-Ts and undergone response assessment. Sixteen pts had HL, 1 had enteropathy associated T cell lymphoma, and 1 had Sezary syndrome. All pts were heavily pre-treated with a median of 8.5 prior therapies (range: 4-17). All pts had received prior brentuximab vedotin and 13 had prior checkpoint inhibitor therapy. Fourteen pts had prior autologous stem cell transplant (SCT) and 7 had prior allogeneic SCT. Treatment was well tolerated with no dose limiting toxicities; as a consequence, the highest dose level of CAR-T cells (2 x 108 CAR-Ts/m2) was given as the RP2DL. Three pts developed cytokine release syndrome (CRS) (grade 1: 2 pts and grade 2: 1 pt). Grade 1 CRS resolved spontaneously, while the pt with grade 2 CRS responded to tocilizumab. No neurotoxicity was observed. Out of the 18 pts, 4 were in a complete response (CR) before infusion due to bridging chemotherapy and remained disease free at 6 wk follow up. Two of these pts have since relapsed with PFS of 3.8 months and 11.9 months while the other 2 pts are still in CR after 1 year of follow up. The 14 pts with evidence of disease pre-lymphodepletion were included in efficacy analysis. Of these 14 pts, 6 had a CR (43%, all in the benda/flu cohort), 1 had partial response (7%), 2 had stable disease (14%) and 5 had progressive disease (35%) at disease assessment. No responses occurred in the 3 pts treated at DL1. At median follow up of 138 days, the median PFS was 129 days. The median PFS for the 3 evaluable pts who received benda at DL1 was 55 days vs 172 days for the 9 pts who received benda/flu at DL2 (p = 0.039). The median PFS for the 2 evaluable pts at DL2 who received benda lymphodepletion was 85.5 days but this was not included in the comparison due to small sample size. Two out of 14 evaluable pts remain in CR at 1 year. Using PCR on peripheral blood, CD30.CAR-Ts were found to be increased in the circulation of all pts, peaking at wk 2 post infusion, with increasing CAR-T cells in pts receiving greater number of CAR-T cells or more robust lymphodepletion (3.4x103 ± 2.9x103 copies/ug of DNA for DL1-beda vs. 61x103 ± 41x103 for DL2-benda vs. 59x103 ± 22x103 for benda/flu). These differences were confirmed by flow cytometry (CD3+CAR+ cells = 13%±9% for DL1-benda vs 21%±10% for DL2-benda vs 35%±8% for benda/flu). Persistence was also related to dose level and lymphodepletion (0.06x103 ± 0.01x103 vs 0.44x103 ± 0.41x103 vs 28x103 ± 15x103/ug of DNA at wk 4 for DL1-benda, DL2-benda, and benda/flu, respectively). Although both lymphodepletion regimens reduced the lymphocyte counts, only the combination of benda/flu was found to have a significant increase in IL-15 and IL-7 cytokines (13 fold, p<0.01 and 3 fold, p=0.016, respectively) that was sustained for 2 wks post infusion. Conclusions: We show that CD30.CAR-Ts combined with lymphodepletion with benda/ flu are safe and at 2 x 108 CAR T cells/m2 demonstrate excellent antitumor activity for pts with r/r CD30+ lymphomas. We also find that the addition of flu is critical for enhancing cytokines important for T cell growth and persistence. Finally, we demonstrate a significant PFS advantage in pts with r/r CD30+ lymphoma who received the highest dose level combined with benda and flu. Disclosures Grover: Seattle Genetics: Consultancy. Park:G1 Therapeutics: Consultancy; Gilead: Speakers Bureau; Seattle Genetics: Research Funding; Teva: Research Funding; Rafael Pharma: Consultancy; BMS: Consultancy; BMS: Research Funding; Seattle Genetics: Speakers Bureau; Teva: Consultancy; Takeda: Research Funding. Dittus:Seattle Genetics: Consultancy. Serody:Merck: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 225-225
Author(s):  
Sara Ghorashian ◽  
Anne Marijn Kramer ◽  
Shimobi Onuoha ◽  
Gary Wright ◽  
Jack Luke Bartram ◽  
...  

Introduction: The CARPALL study (NCT02443831) employed a novel CD19CAR (CAT-41BBz CAR) with a faster off rate than the Kymriah FMC63-41BBz CAR (CAT 3.1x10-3s-1, FMC 6.8 x 10-5s-1), with equivalent on-rate (CAT 2.2 x 105, FMC 2.1 x 105). We herein report updated outcomes and CAR T cell persistence with an additional 6 months follow up from a submitted manuscript (Ghorashian et al., Nat Med, submitted) Methods: Patients aged &lt;25 years with high risk, relapsed CD19+ B-ALL were eligible on this multi-centre, open label, non-randomised phase I study of autologous CAT-41BBz CAR T cells. Patients were followed to a data cut-off of 07/18/2019. CAT-41BBz CAR T cells were generated by magnetic bead activation of leucapheresed PBMCs, lentiviral transduction, followed by bioreactor expansion and magnetic bead removal prior to cryopreservation. All patients received lymphodepletion (fludarabine + cyclophosphamide) followed by 1x106/kg CAR T cells. Presence of CAR T cells in the blood and bone marrow (BM) was assessed (flow cytometry and qPCR) monthly for 6 months, then 6 weekly to 1 year and then 3 monthly. BM MRD was assessed (IgH qPCR, flow cytometry) at the same time-points up to 2 years to establish durability of responses as a stand-alone therapy. Primary end-points were incidence of grade 3-5 toxicity and the proportion of patients achieving molecular remission. Results: Of 17 patients recruited, 14 were treated due to manufacturing failure in 3 patients.The median age was 9 years (range 1-19 years). All patients had advanced ALL with a median of 4 prior therapy lines. 10 of 14 patients (71%) had relapsed post allogeneic SCT. Prior to lymphodepletion, 4 patients had &gt;5% BM disease, 6 had disease between 5x10-2and 1x10-5, 4 were BM MRD negative having had recurrent isolated CNS disease. Median transduction efficiency was 31% (range 16.5 to 96.4%). 12/14 treated patients received the anticipated dose of 1x106CAR T cells/kg (2 received 0.9x106/kg). Considering all evaluable patients, (n=14 for CAR T cell persistence by qPCR, n=13 by flow) the geometric mean of Cmax was 128 912/µg DNA and of the area under the curve between D0 and D28 was 1,721,355 copies/ µg DNA (Table 1). At the point of maximal expansion, a median of 35% of circulating T cells were CAR+. Median half-life was 34 days (range 3-102). CAR T cells continued to be detectable by qPCR in 11 of 14 (79%) patients at last assessment and by flow cytometry up to 30 months post infusion in 8 of 13(61%). Median duration of CAR T persistence by flow was 261 days (range 7-917). 3 patients failed to have persistence of CAR T cells beyond 1 month. T cell mediated anti-CAR specific cytotoxic activity was detected in 2/2 evaluable patients. Updated persistence data will be presented at the meeting Cytokine release syndrome (CRS) occurred in 13 (93%, grade 1 n=9, grade 2 n=4). None developed ≥grade 3 CRS, had CRS-related ICU admission, or received Tocilizumab. CRS was associated with modest elevations of IL-6, IFN-γand IL-10. Grade 2 neurotoxicity was observed in 3 patients and resolved spontaneously. One patient had grade 4 leucoencephalopathy presumed due to chemotherapy as well as grade 5 sepsis. Ten patients (71%) had grade 3-4 cytopenia persisting beyond day 28 or recurring afterthis. 12/14 (86%) patients achieved molecular complete or continuing complete remission at a median of 30 days post infusion (range 30-90 days, Table 2). At a median follow-up of 20.3 months, 4/14 (29%) evaluable patients remain MRD negative. 5 relapsed with CD19-disease, 1 with CD19+ disease. The median duration of EFS (based on death or morphological relapse) has not been reached, 12 month EFS = 52%, OS = 70% (Figures 1, 2 and Table 3). Conclusion: We noted excellent CAR T cell expansion and persistence in a ALL cohort treated with the fast off-rate CAT-41BBz CAR despite their lower BM disease at treatment compared to other studies. The kinetics documented for all evaluable patients showed a 5-fold greater CAR T cell expansion and 2-fold longer half-life than responders in published series utilising tisagenlecleucel in a similar ALL cohort (Mueller et al., Blood 2017). Patients had a favourable toxicity profile with no severe (grade 3-4) CRS and equivalent disease outcomes to the ELIANA study despite having similarly advanced disease (Maude et al., NEJM 2018292). These data suggest long lived CAR T cell persistence supports stand-alone therapy for ALL with durable responses. Disclosures Ghorashian: Celgene: Honoraria; novartis: Honoraria; UCLB: Patents & Royalties: UCLB. Kramer:UCLB: Patents & Royalties. Ciocarlie:Servier: Other: Financial Support. Farzaneh:Autolus Ltd: Equity Ownership, Research Funding. Pule:Autolus: Employment, Equity Ownership, Patents & Royalties. Amrolia:UCLB: Patents & Royalties.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 806-806
Author(s):  
Sara Ghorashian ◽  
Anne Marijn Kramer ◽  
Sarah Jayne Albon ◽  
Gary Wright ◽  
Fernanda Castro ◽  
...  

Abstract Introduction: Published studies of CD19 CAR T cells have shown unprecedented response rates in ALL but with a 23-27% incidence of severe Cytokine Release Syndrome (CRS) and 27-50% incidence of severe neurotoxicity which may limit broader application. We developed a novel second generation CD19CAR (CAT-41BBz CAR) with a lower affinity and faster off-rate but equivalent on-rate than the FMC63-41BBz CAR (Kd 116 nM vs 0.9 nM, T1/2 10s vs 1260s) utilised in CTL019 currently under consideration by the FDA. Pre-clinical studies indicated T-cells transduced with CAT-41BBz mediate enhanced tumor clearance and show increased expansion in an NSG-NALM6 stress test model (Kramer et al., submitted). We here report interim results from a multi-centre, Phase I clinical study of autologous CAT-41BBz CAR T cells as therapy for high risk/relapsed paediatric ALL, CARPALL (NCT02443831) demonstrating efficacy with an excellent safety profile. Methods: Autologous T cells were activated with anti-CD3/CD28 beads, transduced with a SIN lentiviral vector encoding CAT-41BBz CAR and expanded for 4 days prior to magnetic bead removal and cryopreservation. Transduction efficiency was assessed using an anti-idiotype antibody. Serum levels of cytokines associated with CRS were measured using cytometric bead array. All patients received lymphodepletion with fludarabine 150 mg/m2 + cyclophosphamide 1.5g/m2 followed by a single infusion of CAR T cells at a dose of 1x106 CAR+ T cells. Patients were monitored for the presence of CAR T cells in the blood by flow cytometry and by qPCR for the 41BBz junctional region, as well as circulating B cell count monthly for 6 months and then 6 weekly to 1 year. Disease status was assessed in the bone marrow morphologically, by IgH qPCR, as well as by flow cytometric assessment of MRD at the same time-points to establish durability of responses as a stand-alone therapy. The primary end-points were incidence of grade 3-5 toxicity related to CAR T cells within 30 days and the proportion of patients achieving molecular remission. Results: We have enrolled 10 patients and treated 8 to date. Six of 8 had relapsed post myeloablative SCT. The median disease burden prior to lymphodepletion was 9% blasts (ranging from molecular CR to 74% blasts, Table 1). It was possible to generate a product meeting release criteria in all but 1 patient (90% feasibility). Median transduction efficiency was 18.1% (range 6.7 to 76.3%). All treated patients received the anticipated dose of 1x106 CAR T cells/kg. Cytokine release syndrome occurred in all patients (grade 1 n=4, grade 2 n=4), but to date none have developed ≥ grade 3 CRS, required ICU admission or therapy with Tocilizumab. CRS was associated with modest elevations of IL-6, IFN-γ and IL-10 and resolved spontaneously in all. Grade 2 neurotoxicity was observed in 3 patients and resolved spontaneously, but no severe (≥grade 3) neurotoxicity was seen. Five patients had prolonged grade 4 neutropenia lasting &gt; 30 days but this resolved in all by 2 months. Only 1 patient experienced significant infective complications in the context of pre-existing poor marrow reserve following allogeneic SCT. 6/7 (86%) evaluable patients achieved molecular remission at a median of 30 days post infusion (range 30-60 days, Table 1). One patient did not respond and died of CD19+ disease progression. At a median follow-up of 5.9 months (range 28-328 days), 4/7 evaluable patients remain in flow MRD negative remission of whom 3 show no evidence of molecular MRD at 1, 7.5 and 9 months. Two patients relapsed with CD19- disease at 3 and 4 months post infusion: 1 of these remains alive with disease at 11 months and the other died of disease progression. Reflecting our pre-clinical data with CAT-41BBz CAR, we have seen excellent CAR T cell expansion (median 65459 copies/µg DNA at 1 month, range 609 to 230112) and persistence at up to 11 months post-infusion (Figure 1). All 7 evaluable patients have ongoing CAR T cell persistence detectable by both flow and qPCR as well as ongoing B cell aplasia at last follow-up. Conclusions: These interim results with a novel low affinity CD19 CAR show similar remission rates to those reported by US studies in paediatric ALL with an improved safety profile. No severe (grade ≥3) CRS or neurotoxicity has occurred to date despite high tumour burden in 4 patients. Excellent CAR T cell expansion has been documented, as well as long duration of CAR T cell persistence and associated B cell aplasia. Disclosures Ghorashian: UCL: Patents & Royalties: UCL Business. Kramer: UCL: Patents & Royalties: UCL Business. Lucchini: Alexion: Membership on an entity's Board of Directors or advisory committees. Pule: Autolus Ltd: Employment, Equity Ownership, Research Funding; UCL: Patents & Royalties: UCL Business.


Author(s):  
Jia Feng ◽  
Haichan Xu ◽  
Andrew Cinquina ◽  
Zehua Wu ◽  
Qi Chen ◽  
...  

AbstractWhile treatment for B-cell malignancies has been revolutionized through the advent of CAR immunotherapy, similar strategies for T-cell malignancies have been limited. Additionally, T-cell leukemias and lymphomas can commonly metastasize to the CNS, where outcomes are poor and treatment options are associated with severe side effects. Consequently, the development of safer and more effective alternatives for targeting malignant T cells that have invaded the CNS remains clinically important. CD5 CAR has previously been shown to effectively target various T-cell cancers in preclinical studies. As IL-15 strengthens the anti-tumor response, we have modified CD5 CAR to secrete an IL-15/IL-15sushi complex. In a Phase I clinical trial, these CD5-IL15/IL15sushi CAR T cells were tested for safety and efficacy in a patient with refractory T-LBL with CNS infiltration. CD5-IL15/IL15sushi CAR T cells were able to rapidly ablate the CNS lymphoblasts within a few weeks, resulting in the remission of the patient’s lymphoma. Despite the presence of CD5 on normal T cells, the patient only experienced a brief, transient T-cell aplasia. These results suggest that CD5-IL15/IL15sushi CAR T cells may be a safe and useful treatment of T-cell malignancies and may be particularly beneficial for patients with CNS involvement.Graphical Abstract


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-6
Author(s):  
Xian Zhang ◽  
Junfang Yang ◽  
Wenqian Li ◽  
Gailing Zhang ◽  
Yunchao Su ◽  
...  

Backgrounds As CAR T-cell therapy is a highly personalized therapy, process of generating autologous CAR-T cells for each patient is complex and can still be problematic, particularly for heavily pre-treated patients and patients with significant leukemia burden. Here, we analyzed the feasibility and efficacy in 37 patients with refractory/relapsed (R/R) B-ALL who received CAR T-cells derived from related donors. Patients and Methods From April 2017 to May 2020, 37 R/R B-ALL patients with a median age of 19 years (3-61 years), were treated with second-generation CD19 CAR-T cells derived from donors. The data was aggregated from three clinical trials (www.clinicaltrials.gov NCT03173417; NCT02546739; and www.chictr.org.cn ChiCTR-ONC-17012829). Of the 37 patients, 28 were relapsed following allogenic hematopoietic stem cell transplant (allo-HSCT) and whose lymphocytes were collected from their transplant donors (3 HLA matched sibling and 25 haploidentical). For the remaining 9 patients without prior transplant, the lymphocytes were collected from HLA identical sibling donors (n=5) or haploidentical donors (n=4) because CAR-T cells manufacture from patient samples either failed (n=5) or blasts in peripheral blood were too high (&gt;40%) to collect quality T-cells. The median CAR-T cell dose infused was 3×105/kg (1-30×105/kg). Results For the 28 patients who relapsed after prior allo-HSCT, 27 (96.4%) achieved CR within 30 days post CAR T-cell infusion, of which 25 (89.3%) were minimal residual disease (MRD) negative. Within one month following CAR T-cell therapy, graft-versus-host disease (GVHD) occurred in 3 patients including 1 with rash and 2 with diarrhea. A total of 19 of the 28 (67.9%) patients had cytokine release syndrome (CRS), including two patients (7.1%) with Grade 3-4 CRS. Four patients had CAR T-cell related neurotoxicity including 3 with Grade 3-4 events. With a medium follow up of 103 days (1-669days), the median overall survival (OS) was 169 days (1-668 days), and the median leukemia-free survival (LFS) was 158 days (1-438 days). After CAR T-cell therapy, 15 patients bridged into a second allo-HSCT and one of 15 patients (6.7%) relapsed following transplant, and two died from infection. There were 11 patients that did not receive a second transplantation, of which three patients (27.3%) relapsed, and four parents died (one due to relapse, one from arrhythmia and two from GVHD/infection). Two patients were lost to follow-up. The remaining nine patients had no prior transplantation. At the time of T-cell collection, the median bone marrow blasts were 90% (range: 18.5%-98.5%), and the median peripheral blood blasts were 10% (range: 0-70%). CR rate within 30 days post CAR-T was 44.4% (4/9 cases). Six patients developed CRS, including four with Grade 3 CRS. Only one patient had Grade 3 neurotoxicity. No GVHD occurred following CAR T-cell therapy. Among the nine patients, five were treated with CAR T-cells derived from HLA-identical sibling donors and three of those five patients achieved CR. One patient who achieved a CR died from disseminated intravascular coagulation (DIC) on day 16. Two patients who achieved a CR bridged into allo-HSCT, including one patient who relapsed and died. One of two patients who did not response to CAR T-cell therapy died from leukemia. Four of the nine patients were treated with CAR T-cells derived from haploidentical related donors. One of the four cases achieved a CR but died from infection on day 90. The other three patients who had no response to CAR T-cell therapy died from disease progression within 3 months (7-90 days). Altogether, seven of the nine patients died with a median time of 19 days (7-505 days). Conclusions We find that manufacturing CD19+ CAR-T cells derived from donors is feasible. For patients who relapse following allo-HSCT, the transplant donor derived CAR-T cells are safe and effective with a CR rate as high as 96.4%. If a patient did not have GVHD prior to CAR T-cell therapy, the incidence of GVHD following CAR T-cell was low. Among patients without a history of transplantation, an inability to collect autologous lymphocytes signaled that the patient's condition had already reached a very advanced stage. However, CAR T-cells derived from HLA identical siblings can still be considered in our experience, no GVHD occurred in these patients. But the efficacy of CAR T-cells from haploidentical donors was very poor. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 39-40
Author(s):  
Aimee C Talleur ◽  
Renee M. Madden ◽  
Amr Qudeimat ◽  
Ewelina Mamcarz ◽  
Akshay Sharma ◽  
...  

CD19-CAR T-cell therapy has shown remarkable efficacy in pediatric patients with relapsed and/or refractory B-cell acute lymphoblastic leukemia (r/r ALL). Despite high short-term remission rates, many responses are not durable and the best management of patients who achieve a complete response (CR) post-CAR T-cell therapy remains controversial. In particular, it is unclear if these patients should be observed or proceed to consolidative allogeneic hematopoietic cell transplantation (HCT). To address this question, we reviewed the clinical course of all patients (n=22) who received either an investigational CAR T-cell product (Phase I study: SJCAR19 [NCT03573700]; n=12) or tisagenlecleucel (n=10) at our institution. The investigational CD19-CAR T cells were generated by a standard cGMP-compliant procedure using a lentiviral vector encoding a 2nd generation CD19-CAR with a FMC63-based CD19 binding domain, CD8a stalk and transmembrane domain, and 41BB.ζ signaling domain. Patients received therapy between 8/2018 and 3/2020. All products met manufacturing release specifications. Within the entire cohort, median age at time of infusion was 12.3 years old (range: 1.8-23.5) and median pre-infusion marrow burden using flow-cytometry minimal residual disease (MRD) testing was 6.8% (range: 0.003-100%; 1 patient detectable by next-generation sequencing [NGS] only). All patients received lymphodepleting chemotherapy (fludarabine, 25mg/m2 daily x3, and cyclophosphamide, 900mg/m2 daily x1), followed by a single infusion of CAR T-cells. Phase I product dosing included 1x106 CAR+ T-cells/kg (n=6) or 3x106 CAR+ T-cells/kg (n=6). Therapy was well tolerated, with a low incidence of cytokine release syndrome (any grade: n=10; Grade 3-4: n=4) and neurotoxicity (any grade: n=8; Grade 3-4: n=3). At 4-weeks post-infusion, 15/22 (68.2%) patients achieved a CR in the marrow, of which 13 were MRDneg (MRDneg defined as no detectable leukemia by flow-cytometry, RT-PCR and/or NGS, when available). Among the 2 MRDpos patients, 1 (detectable by NGS only) relapsed 50 days after CAR T-cell infusion and 1 died secondary to invasive fungal infection 35 days after infusion. Within the MRDneg cohort, 6/13 patients proceeded to allogeneic HCT while in MRDneg/CR (time to HCT, range: 1.8-2.9 months post-CAR T-cell infusion). All 6 HCT recipients remain in remission with a median length of follow-up post-HCT of 238.5 days (range 19-441). In contrast, only 1 (14.3%) patient out of 7 MRDneg/CR patients who did not receive allogeneic HCT, remains in remission with a follow up of greater 1 year post-CAR T-cell infusion (HCT vs. no HCT: p&lt;0.01). The remaining 6 patients developed recurrent detectable leukemia within 2 to 9 months post-CAR T-cell infusion (1 patient detectable by NGS only). Notably, recurring leukemia remained CD19+ in 4 of 5 evaluable patients. All 4 patients with CD19+ relapse received a 2nd CAR T-cell infusion (one in combination with pembrolizumab) and 2 achieved MRDneg/CR. There were no significant differences in outcome between SJCAR19 study participants and patients who received tisagenlecleucel. With a median follow up of one year, the 12 month event free survival (EFS) of all 22 patients is 25% (median EFS: 3.5 months) and the 12 month overall survival (OS) 70% (median OS not yet reached). In conclusion, infusion of investigational and FDA-approved autologous CD19-CAR T cells induced high CR rates in pediatric patients with r/r ALL. However, our current experience shows that sustained remission without consolidative allogeneic HCT is not seen in most patients. Our single center experience highlights not only the need to explore maintenance therapies other than HCT for MRDneg/CR patients, but also the need to improve the in vivo persistence of currently available CD19-CAR T-cell products. Disclosures Sharma: Spotlight Therapeutics: Consultancy; Magenta Therapeutics: Other: Research Collaboration; CRISPR Therapeutics, Vertex Pharmaceuticals, Novartis: Other: Clinical Trial PI. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees. Gottschalk:Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties; TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3113-3113 ◽  
Author(s):  
Nico Gagelmann ◽  
Francis Ayuketang Ayuk ◽  
Djordje Atanackovic ◽  
Nicolaus Kroeger

Background Cellular immunotherapies represent an enormously promising strategy for relapsed/refractory multiple myeloma (RRMM). Chimeric antigen receptor (CAR) T cells targeting B cell maturation antigen (BCMA) have shown impressive results in early-phase clinical studies. Here, we summarize the current body of evidence on the role of anti-BCMA CAR T cell therapy for RRMM. Methods We performed a systematic literature review to identify all publicly available prospective studies. We searched Medline, Cochrane trials registry, and www.clinicaltrials.gov. To include the most recent evidence, meeting abstracts from international hematology congresses were added. A conventional meta-analysis was conducted using meta and metafor packages in R statistical software. Pooled event rates and 95% confidence intervals (CIs) were calculated using the inverse variance method within a random-effects framework. Main efficacy outcomes were overall response, complete response (CR), and minimal residual disease (MRD). Furthermore, relapse rates, progression-free survival, and overall survival were evaluated. In terms of safety, outcomes were cytokine release syndrome (CRS), neurotoxicity, and hematologic toxic effects. Results Fifteen studies comprising a total of 285 patients with heavily pretreated RRMM were included in quantitative analyses. Patients received a median of seven prior treatment lines (such as proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, stem cell transplantation) which included autologous stem cell transplantation in 90% of patients. The median age of patients was 59 years and median follow-up duration ranged from 1.1 to 11.3 months. Most studies used 4-1BB (or CD137), a member of the TNF receptor superfamily, as an activation-induced T-cell costimulatory molecule. Most studies used fludarabine and cyclophosphamide for lymphodepletion while one study used busulfan and cyclophosphamide and one study used cyclophosphamide only. Most studies used the former Lee criteria for CRS grading. Anti-BCMA CAR T cells resulted in a pooled overall response of 82% (95% CI, 74-88%). The pooled proportion of CR in all evaluable patients was 36% (95% CI, 24-50%). Within responders, the pooled proportion of MRD negativity was 77% (95% CI, 67-85%). Higher dose levels of infused CAR+ cells were associated with higher overall response rates resulting in a pooled proportion of 88% (95% CI, 78-94%). In addition, peak CAR T cell expansion appeared to be associated with responses.The presence of high-risk cytogenetics appeared to be associated with lower overall response rates resulting in a pooled proportion of 68% (95% CI, 47-83%). The presence of extramedullary disease at time of infusion did not influence outcome and was associated with similar response rates compared with RRMM patients who did not have extramedullary disease, resulting in a pooled proportion of 78% (95% CI, 47-93%). The pooled relapse rate of all responders was 45% (95% CI, 27-64%) and the median progression-free survival was 10 months. In terms of overall survival, pooled survival rates were 84% (95% CI, 60-95%) at last follow-up (median, 11 months). In terms of safety, the pooled proportion of CRS of any grade was 69% (95% CI, 51-83%). Notably, the pooled proportions of CRS grades 3-4 and neurotoxicity were 15% (95% CI, 10-23%) and 18% (95% CI, 10-31%). Peak CAR T cell expansion appeared to be more likely in the setting of more severe CRS in three studies. Most hematologic toxic effects of grade 3 or higher were neutropenia (85%), thrombocytopenia (70%), and leukopenia (60%). Conclusion Anti-BCMA CAR T cells showed high response rates, even in high-risk features such as high-risk cytogenetics and extramedullary disease at time of CAR T cell infusion. Toxicity was manageable across all early-phase studies. However, almost half of the patients who achieved a response eventually relapsed. Larger studies with longer follow-up evaluating the association of response and survival are needed. Disclosures Ayuk: Novartis: Honoraria, Other: Advisory Board, Research Funding. Kroeger:Medac: Honoraria; Sanofi-Aventis: Honoraria; Neovii: Honoraria, Research Funding; Riemser: Research Funding; JAZZ: Honoraria; Novartis: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; DKMS: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4187-4187 ◽  
Author(s):  
Zixun Yan ◽  
Wen Wang ◽  
Zhong Zheng ◽  
Ming Hao ◽  
Su Yang ◽  
...  

Abstract Introduction JWCAR029 is a novel CD19-directed 4-1BB stimulated chimeric antigen receptor T (CAR-T) cell type, which is different from JWCAR017 with independent production of CD4 and CD8 T cells and transfusion in non-fixed ratio. We conducted a single arm, open-label, dose escalation Phase I trial of JWCAR029 in relapsed and refractory B-cell non-Hodgkin lymphoma (NCT03355859). Methods From January to July 2018, 10 patients have been enrolled in this trial, including eight diffused large B cell lymphoma (DLBCL) and two MALT lymphoma, with median age of 47 years (range 32 to 59 years). All the patients received immunochemotherapy as induction and more than two lines of salvage treatment. Two patients received bridging chemotherapy after T-cell collection due to rapid tumor progression, followed by re-evaluation before CAR-T cell infusion. Lymphodepletion preconditioning was accomplished by fludarabine 25mg/m2/d and cyclophosphamide 250mg/m2/d on Day-4 to D-2, followed by CAR-T cell infusion on Day0. JWCAR029 was administrated as a single infusion in escalation dose levels, from 2.5×107 CAR-T cells (dose level 1, DL1) to 5.0×107 CAR-T cells (dose level 2, DL2) and to 1.0×108 CAR-T cells (dose level 3, DL3) according to mTPI-2 algorithm. Circulating blood count, serum biochemistry, and coagulation status were follow-up after infusion. Cytokines were assessed on a Luminex platform. Tumor evaluation was performed on Day 29 by PET-CT. PK data were detected by flow cytometry and real-time quantitative polymerase chain reaction system. All the adverse events were recorded. The study was approved by the Shanghai Rui Jin Hospital Review Board with informed consent obtained in accordance with the Declaration of Helsinki. Results The demographic characteristics of the patients were demonstrated in Table 1. Among six evaluable patients (3 of DL1 and 3 of DL2), the ORR was 100% on Day 29, including four complete remission and 2 partial remission. Cytokine release syndrome (CRS) was 100% in Gr 1, with main symptoms as fever (<39.0 degrees), fatigue, and muscle soreness. No neurotoxicity was observed. Four of the six patients with fever >38.0 degrees used prophylactic IL-6 Inhibitor (8mg/kg, ACTEMRA, two patients administered twice). No patients received steroids. The CRS showed no difference between dose level groups (p>0.99). Adverse effects included leukopenia (Gr 3-4: 83.3%, Gr 1-2: 16.7%), hypofibrinogenemia (Gr 1: 16.7%, Gr 2-4: 0%), liver dysfunction (Gr 1: 33.3%, Gr 2-4: 0%), elevated CRP (Gr 1: 83.3%, Gr 2-4: 0%), ferritin (Gr 1-2: 83.3%, Gr 2-4: 0%), or IL-6 (Gr 1-2:100%, Gr 3-4: 0%, Table 2). Conclusion Although long-term follow-up was needed, the preliminary data of six patients in this trial have demonstrated high response rates and safety of JWCAR029 in treating relapsed and refractory B-cell non-Hodgkin lymphoma. Disclosures Hao: JW Therapeutics: Employment, Equity Ownership.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 7024-7024 ◽  
Author(s):  
Jae Hong Park ◽  
Bianca Santomasso ◽  
Isabelle Riviere ◽  
Brigitte Senechal ◽  
Xiuyan Wang ◽  
...  

7024 Background: CD19-specific chimeric antigen receptor (CAR) modified T cells produce high anti-tumor activity in relapsed or refractory (R/R) ALL, but can be associated with cytokine release syndrome (CRS) and neurotoxicity (NTX). Herein, we report baseline and post-treatment clinical and laboratory factors associated with severe NTX (≥Grade 3) in our phase I clinical trial of CD19-specific 19-28z CAR T cells for adult patients (pts) with R/R B-ALL (NCT01044069). Methods: 51 adult pts with R/R B-ALL were treated with 19-28z CAR T cells following conditioning chemotherapy at MSKCC. In order to identify clinical and serum biomarkers associated with severe NTX (sNTX), we examined demographic, treatment, and clinical blood parameters as well as in vivo CAR T expansion and serum cytokines, and performed univariate and multivariate analysis. Results: In this cohort of ALL pts, 20, 8, 2, 18 and 3 pts experienced Gr 0, 1, 2, 3, and 4 NTX, respectively. No pt developed grade 5 NTX. Disease burden (≥50% blasts) at the time of T cell infusion (p = 0.0045) and post-treatment ≥Gr3 CRS (p = 0.0010) were significantly associated with sNTX, but we found no association with age, weight, T cell dose, choice of conditioning chemotherapy (Flu/Cy s. Cy), and prior lines of treatment. Among the clinical and blood parameters, fever, low PLT, high ferritin and MCHC as well as elevated GM-CSF, IFNγ, IL-15, IL-5, IL-10, IL-2 at day 3 of T cell infusion at day 3 of T cell infusion were significantly associated with sNTX (all p < 0.01). While some of these cytokines were also elevated in severe CRS cases, IL-5 and IL-2 at day 3 were unique to sNTX. Furthermore, in vivo peak CAR T expansion at day 7 (p = 0.0001) significantly correlated with sNTX (p < 0.01). Lastly, multivariate analysis revealed baseline PLT < 60 or MCHC > 33.2% and morphologic disease ( > 5% blasts) has 95% sensitivity and 70% specificity of identifying sNTX pts. Conclusions: These data provide a characterization of early clinical and serum biomarkers of sNTX in adult pts receiving 19-28z CAR T cells and should help identify appropriate pts for early intervention strategy to mitigate NTX. Clinical trial information: NCT01044069.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2539-2539 ◽  
Author(s):  
Paolo Fabrizio Caimi ◽  
Jane Reese ◽  
Folashade Otegbeye ◽  
Dina Schneider ◽  
Kamal Chamoun ◽  
...  

2539 Background: AntiCD19 CAR-T cells have shown encouraging anti-lymphoma activity. Decreasing the time from apheresis to CAR-T infusion can make this therapy available to pts with rapid progression. We present the interim results of a phase I clinical trial using on-site CAR-T manufacture. Methods: Adult pts with r/r CD19+ B cell lymphomas who failed ≥ 2 lines of therapy were enrolled. Autologous T cells were transduced with a lentiviral vector (Lentigen Technology, Inc,LTG1563) encoding an antiCD19 binding motif, CD8 linker and TNFRSF19 transmembrane region, and 4-lBB/CD3z domains. GMP-compliant manufacture was done using CliniMACS Prodigy, in a 12-day culture. Dose levels were 0.5, 1 and 2 x 106 CAR-T cells/kg. Lymphodepletion was done with cyclophosphamide (60mg/kg x 1) and fludarabine (25mg/m2/d x 3). Results: 7 pts (4 women, 3 men) were enrolled. Median age was 60y [range 43-69]. Diagnoses were DLBCL (n = 3) PMBCL, follicular lymphoma (FL), transformed FL, and transformed lymphoplasmacytic lymphoma; with a median of 4 previous treatments. Six pts had symptomatic refractory disease. CAR-T cell product manufacture was successful in all pts. Mean transduction rate was 44% [range 29-57]. CAR-T cell doses were 0.5 x 106/kg (n = 3) and 1 x 106/kg (n = 4). Median apheresis to infusion time was 13 days [range 13–20], 5 products were infused fresh. CAR-T persistence based on vector sequence, peaked in peripheral blood MNCs between days 14-21. Five pts are evaluable for safety. CRS grade 1 - 2 (Lee) occurred in 4 pts; with 3 requiring treatment. Grade 4 CRES (CARTOX-10) occurred in 1 pt, with resolution after corticosteroids; considered a DLT as it lasted more than 72 hours. No treatment-related mortality has occurred. 4/5 evaluable pts have achieved complete response. One pt did not respond and died. After a median follow up 3 months, all responding pts are alive and 1 relapsed 6 mo after treatment. Conclusions: Second generation antiCD19 CAR-T cells with TNFRS19 transmembrane domain have clinical activity against refractory NHL. Short manufacture time achieved by local CAR-T cell manufacture with the CliniMACS Prodigy enables treatment of a very high risk NHL population. Clinical trial information: NCT03434769.


Sign in / Sign up

Export Citation Format

Share Document