leukemias and lymphomas
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 1)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2213-2213
Author(s):  
Cassandra Love ◽  
Raju Pillai ◽  
Sarah L. Ondrejka ◽  
Govind Bhagat ◽  
Amy Chadburn ◽  
...  

Abstract Introduction Blood cancers are collectively common and strikingly heterogeneous diseases both clinically and molecularly. According to the WHO taxonomy, there are over 100 distinct myeloid and lymphoid neoplasms. Genomic profiling of blood cancers has been applied in a somewhat ad hoc fashion using diverse sequencing approaches including the use of targeted panels, whole exome sequencing, whole genome sequencing, RNA sequencing, etc. The lack of data uniformity has made it difficult to comprehensively understand the clinical and molecular spectrum within and across diseases. Systematic genomic approaches can address the central challenges in the diagnosis and treatment of blood cancers. For the diagnosis of blood cancers, the incorporation of genomics could greatly enhance the accuracy and speed of clinical diagnostics. Genomics could also inform their pathology classification. However, these applications must be preceded by a clear understanding of the particular genetic aberrations and expression profiles that unite and distinguish different leukemias and lymphomas. Therapeutic development can also be aided by genomic approaches through identification of new targets and establishing the relevance of existing targets and treatments. Targeted therapies including those directed at specific surface markers (e.g. CD19, CD30 and CD123) or molecular targets (e.g. BCR-ABL fusions, IDH1 mutations and EZH2 mutations) are rarely restricted to a single disease, with most occurring in multiple blood cancers. A systematic understanding of the presence or overlap of these targets within or across blood cancers would significantly expand the therapeutic possibilities and better enable the use of existing therapies in both common and rare cancers. However, such therapeutic possibilities need to be established through a rigorous, data-driven approach. We initiated the Atlas of Blood Cancers Genomes (ABCG) project to systematically elucidate the molecular basis of all leukemias and lymphomas by building upon advances in genomic technologies, our capabilities for data analysis and economies of scale. Using a uniform approach to systematically profile all blood cancers through DNA and RNA sequencing at the whole exome/whole transcriptome level, we aim to link genomic events with clinical outcomes, disease categories and subcategories, thereby providing a complete molecular blueprint of blood cancers. Methods/Results The ABCG project consists of collaborators from 25 institutions around the world who have collectively contributed samples from 10,481 patients comprising every type of blood cancer in the current WHO classification. The samples include thousands of myeloid leukemias and mature B cell lymphomas, hundreds of Hodgkin lymphoma and plasma cell myeloma, as well as every rare type of hematologic malignancy (along with case-matched normal tissue). All cases were de-identified and their associated pathology and detailed clinical information entered into a purpose-built web-based system that included disease-specific data templates. All cases were subjected to centralized pathology review and clinical data review by experienced hematopathologists and oncologists. All 10,481cases are being sequenced at the DNA and RNA level, and are being profiled to define the genetic alterations and expression changes that are characteristic of each disease. Analysis will include translocations, copy number alterations, and viral status. These molecular features will be examined in conjunction with genetic events, pathologic factors, and the clinical features. We have already generated results for ALK-negative anaplastic large B cell lymphoma and primary mediastinal B cell lymphomas (N=210). These data demonstrate novel subgroup and molecular discoveries that are enabled by integrative DNA and RNA sequencing analysis and the examination of molecular features across different diseases as well as within individual entities. In addition, other disease entities and the collective data will be presented in the meeting. Conclusion The ABCG project will comprehensively study the genetic and clinicopathological features of all blood cancers using systematic genomic approaches. We anticipate our data, approaches and results will serve as a lasting resource for the molecular classification and therapeutic development for leukemias and lymphomas. Disclosures McKinney: Novartis: Research Funding; Nordic Nanovector: Research Funding; Molecular Templates: Consultancy, Research Funding; Kite/Gilead: Honoraria, Speakers Bureau; Incyte: Research Funding; Genetech: Consultancy, Honoraria, Research Funding; Epizyme: Consultancy; Celgene: Consultancy, Research Funding; BTG: Consultancy; Beigene: Research Funding; ADC Therapeutics: Consultancy, Speakers Bureau; Pharmacyclics: Consultancy; Verastem: Consultancy. Behdad: Lilly: Speakers Bureau; Roche/Foundation Medicine: Speakers Bureau; Thermo Fisher: Speakers Bureau.


2021 ◽  
Vol 22 (14) ◽  
pp. 7641
Author(s):  
Chiara Brullo ◽  
Carla Villa ◽  
Bruno Tasso ◽  
Eleonora Russo ◽  
Andrea Spallarossa

In the past few years, Bruton’s tyrosine Kinase (Btk) has emerged as new target in medicinal chemistry. Since approval of ibrutinib in 2013 for treatment of different hematological cancers (as leukemias and lymphomas), two other irreversible Btk inhibitors have been launched on the market. In the attempt to overcome irreversible Btk inhibitor limitations, reversible compounds have been developed and are currently under evaluation. In recent years, many Btk inhibitors have been patented and reported in the literature. In this review, we summarized the (ir)reversible Btk inhibitors recently developed and studied clinical trials and preclinical investigations for malignancies, chronic inflammation conditions and SARS-CoV-2 infection, covering advances in the field of medicinal chemistry. Furthermore, the nanoformulations studied to increase ibrutinib bioavailability are reported.


Leukemia ◽  
2021 ◽  
Author(s):  
H. Yesid Estupiñán ◽  
Qing Wang ◽  
Anna Berglöf ◽  
Gerard C. P. Schaafsma ◽  
Yuye Shi ◽  
...  

AbstractIrreversible inhibitors of Bruton tyrosine kinase (BTK), pioneered by ibrutinib, have become breakthrough drugs in the treatment of leukemias and lymphomas. Resistance variants (mutations) occur, but in contrast to those identified for many other tyrosine kinase inhibitors, they affect less frequently the “gatekeeper” residue in the catalytic domain. In this study we carried out variation scanning by creating 11 substitutions at the gatekeeper amino acid, threonine 474 (T474). These variants were subsequently combined with replacement of the cysteine 481 residue to which irreversible inhibitors, such as ibrutinib, acalabrutinib and zanubrutinib, bind. We found that certain double mutants, such as threonine 474 to isoleucine (T474I) or methionine (T474M) combined with catalytically active cysteine 481 to serine (C481S), are insensitive to ≥16-fold the pharmacological serum concentration, and therefore defined as super-resistant to irreversible inhibitors. Conversely, reversible inhibitors showed a variable pattern, from resistance to no resistance, collectively demonstrating the structural constraints for different classes of inhibitors, which may affect their clinical application.


Author(s):  
Jia Feng ◽  
Haichan Xu ◽  
Andrew Cinquina ◽  
Zehua Wu ◽  
Qi Chen ◽  
...  

AbstractWhile treatment for B-cell malignancies has been revolutionized through the advent of CAR immunotherapy, similar strategies for T-cell malignancies have been limited. Additionally, T-cell leukemias and lymphomas can commonly metastasize to the CNS, where outcomes are poor and treatment options are associated with severe side effects. Consequently, the development of safer and more effective alternatives for targeting malignant T cells that have invaded the CNS remains clinically important. CD5 CAR has previously been shown to effectively target various T-cell cancers in preclinical studies. As IL-15 strengthens the anti-tumor response, we have modified CD5 CAR to secrete an IL-15/IL-15sushi complex. In a Phase I clinical trial, these CD5-IL15/IL15sushi CAR T cells were tested for safety and efficacy in a patient with refractory T-LBL with CNS infiltration. CD5-IL15/IL15sushi CAR T cells were able to rapidly ablate the CNS lymphoblasts within a few weeks, resulting in the remission of the patient’s lymphoma. Despite the presence of CD5 on normal T cells, the patient only experienced a brief, transient T-cell aplasia. These results suggest that CD5-IL15/IL15sushi CAR T cells may be a safe and useful treatment of T-cell malignancies and may be particularly beneficial for patients with CNS involvement.Graphical Abstract


2020 ◽  
Vol 21 (18) ◽  
pp. 6915
Author(s):  
Silvia Deaglio ◽  
Tanja Nicole Hartmann

The tumor microenvironment plays a crucial role in driving the behavior and the aggressiveness of neoplastic cells [...]


2020 ◽  
Vol 10 (12) ◽  
pp. a034959 ◽  
Author(s):  
Cihangir Duy ◽  
Wendy Béguelin ◽  
Ari Melnick

2020 ◽  
Vol 10 (11) ◽  
pp. a035444
Author(s):  
Nathanael G. Bailey ◽  
Kojo S.J. Elenitoba-Johnson

Sign in / Sign up

Export Citation Format

Share Document