scholarly journals A new warhead in lymphoma therapy?

Blood ◽  
2021 ◽  
Vol 137 (19) ◽  
pp. 2568-2570
Author(s):  
Andrew McMillan
Keyword(s):  
2019 ◽  
Vol 18 (28) ◽  
pp. 2380-2394 ◽  
Author(s):  
Na Liu ◽  
Rongtong Zhao ◽  
Yue Ma ◽  
Dongyuan Wang ◽  
Chen Yan ◽  
...  

Epigenetics process is the heritable change in gene function that does not involve changes in the DNA sequence. Until now, several types of epigenetic mechanisms have been characterized, including DNA methylation, histone modification (acetylation, methylation, etc.), nucleosome remodeling, and noncoding RNAs. With the biological investigations of these modifiers, some of them are identified as promoters in the process of various diseases, such as cancer, cardiovascular disease and virus infection. Epigenetic changes may serve as potential “first hits” for tumorigenesis. Hence, targeting epigenetic modifiers is being considered as a promising way for disease treatment. To date, six agents in two epigenetic target classes (DNMT and HDAC) have been approved by the US Food and Drug Administration (FDA). Most of these drugs are applied in leukemia, lymphoma therapy, or are combined with other drugs for the treatment of solid tumor. Due to the rapid development of epigenetics and epigenetics targeted drugs, it is becoming an emerging area in targeted drug design.


2020 ◽  
Author(s):  
Senlian Hong ◽  
Chenhua Yu ◽  
Peng Wang ◽  
Yujie Shi ◽  
Weiqian Cao ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qiangqiang Zhao ◽  
Duanfeng Jiang ◽  
Xiaoying Sun ◽  
Qiuyu Mo ◽  
Shaobin Chen ◽  
...  

Abstract Background Non-Hodgkin’s lymphoma (NHL) is a malignant disease of lymphoid tissue. At present, chemotherapy is still the main method for the treatment of NHL. R-CHOP can significantly improve the survival rate of patients. Unfortunately, DOX is the main cytotoxic drug in R-CHOP and it can lead to adverse reactions. Therefore, it is particularly important to uncover new treatment options for NHL. Results In this study, a novel anti-tumor nanoparticle complex Nm@MSNs-DOX/SM was designed and constructed in this study. Mesoporous silica nanoparticles (MSNs) loaded with Doxorubicin (DOX) and anti-inflammatory drugs Shanzhiside methylester (SM) were used as the core of nanoparticles. Neutrophil membrane (Nm) can be coated with multiple nanonuclei as a shell. DOX combined with SM can enhance the anti-tumor effect, and induce apoptosis of lymphoma cells and inhibit the expression of inflammatory factors related to tumorigenesis depending on the regulation of Bcl-2 family-mediated mitochondrial pathways, such as TNF-α and IL-1β. Consequently, the tumor microenvironment (TME) was reshaped, and the anti-tumor effect of DOX was amplified. Besides, Nm has good biocompatibility and can enhance the EPR effect of Nm@MSNs-DOX/SM and increase the effect of active targeting tumors. Conclusions This suggests that the Nm-modified drug delivery system Nm@MSNs-DOX/SM is a promising targeted chemotherapy and anti-inflammatory therapy nanocomplex, and may be employed as a specific and efficient anti-Lymphoma therapy.


2001 ◽  
Vol 37 ◽  
pp. S51
Author(s):  
M. Dechant ◽  
G. Vidarsson ◽  
B. Stockmeyer ◽  
R. Repp ◽  
M. Glennie ◽  
...  

2005 ◽  
Vol 129 (3) ◽  
pp. 410-411
Author(s):  
Wolfgang Kern ◽  
Torsten Haferlach ◽  
Susanne Schnittger ◽  
Claudia Schoch

Abstract Cytomorphologic testing and multiparameter flow cytometry are the mainstays in diagnosing B-cell chronic lymphocytic leukemia, whereas fluorescence in situ hybridization that targets the translocation t(14;18)(q32;q21) often is used to identify follicular lymphoma. Therapy is highly diverse between both diseases. We describe a case with cytomorphologically and immunologically proven B-cell chronic lymphocytic leukemia in which t(14;18)(q32;q21) was found.


Sign in / Sign up

Export Citation Format

Share Document