Inhibition of XIAP Enhances Specific Cytotoxic T Lymphocyte (CTL) Killing and CD20-Directed Antibody-Dependent Cellular Cytotoxicity of Chronic Lymphocytic Leukemia B Cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3475-3475 ◽  
Author(s):  
Arnon P. Kater ◽  
Roman Rieger ◽  
Kate Welsh ◽  
Adel Nefzi ◽  
Richard Houghten ◽  
...  

Abstract CLL cells express relatively high-levels of XIAP, a principle downstream inhibitor of procaspase activation that also is expressed in many other types of cancer. Expression of XIAP may contribute to the resistance of CLL cells (and other cancers in general) to apoptosis induced by anti-cancer drugs and immune effector mechanisms. The anti-apoptotic activity of XIAP can be circumvented by SMAC, a natural inhibitor to the inhibitors of apoptosis (IAPs) that is released from mitochondria following activation of the intrinsic apoptotic pathway. SMAC inhibits XIAP by blocking its BIR domain(s), thereby precluding XIAP from inhibiting active caspases, such as caspase 9. Using mixture-based combinatorial libraries, we identified a series of polyphenylureas that selectively target the BIR2 domain of XIAP and that do not compete with SMAC for binding to XIAP (Cancer Cell5:25–35, 2004). Structural activity studies identified analogs that had improved drug-like characteristics. We investigated whether an active (TPI 1540-14) XIAP-inhibitor or an inactive structural analog (TPI 1540-20) could influence the sensitivity of CLL cells to HLA class-I-restricted killing by allogeneic cytotoxic T lymphocytes (CTL) or to anti-CD20-directed antibody-dependent cell cytotoxicity (ADCC). For these studies we generated allogeneic CTL lines that could mediate specific killing of CLL cells in a HLA-class-I restricted manner. Moreover, the cytotoxicity of these CTL for CLL cells could be inhibited in a concentration-dependent fashion by W6/32, a mouse mAb that recognizes a framework determinant(s) common to all HLA class I molecules. Treatment of CLL cells with subsaturating amounts of W6/32 prior to the allogeneic CTL assay might mimic the situation commonly encountered by autologous CTL, which recognize cells that express relatively few class-I molecules bearing the target peptide-antigen. Treatment of CLL cells with TPI 1540-14, but not TPI 1540-20, significantly enhanced the specific killing of CLL cells by allogeneic CTL in a dose-dependent fashion. Moreover, the capacity of TPI 1540-14 to enhance CTL killing was more apparent when subsaturating concentrations of W6/32 mAb were used to treat the CLL target cells prior to the assay. With either compound, however, saturating amounts of W6/32 blocked CTL activity Similar effects were observed on the ADCC directed by the anti-CD20 mAb Rituximab using isolated allogeneic natural killer cells (NK cells) as effector cells. As noted in prior studies, NK cells failed to mediate high-level ADCC against Rituximab-treated CLL cells even at high effector:target ratios, conceivably due in part to the relatively low level expression of CD20 by CLL cells. However, treatment of CLL cells with TPI 1540-14, significantly enhanced Rituximab-directed ADCC by the allogeneic NK cells. We conclude that TPI 1540-14 can enhance CTL-mediated killing and Rituximab-directed ADCC of CLL cells in vitro. These studies suggest that inhibition of XIAP may enhance the activity of either active or passive immune therapeutic strategies in patients with this disease.

1994 ◽  
Vol 180 (2) ◽  
pp. 545-555 ◽  
Author(s):  
A Moretta ◽  
M Vitale ◽  
S Sivori ◽  
C Bottino ◽  
L Morelli ◽  
...  

GL183 or EB6 (p58) molecules have been shown to function as receptors for different HLA-C alleles and to deliver an inhibitory signal to natural killer (NK) cells, thus preventing lysis of target cells. In this study, we analyzed a subset of NK cells characterized by a p58-negative surface phenotype. We show that p58-negative clones, although specific for class I molecules do not recognize HLA-C alleles. In addition, by the use of appropriate target cells transfected with different HLA-class I alleles we identified HLA-B7 as the protective element recognized by a fraction of p58-negative clones. In an attempt to identify the receptor molecules expressed by HLA-B7-specific clones, monoclonal antibodies (mAbs) were selected after mice immunization with such clones. Two of these mAbs, termed XA-88 and XA-185, and their F(ab')2 fragments, were found to reconstitute lysis of B7+ target cells by B7-specific NK clones. Both mAbs were shown to be directed against the recently clustered Kp43 molecule (CD94). Thus, mAb-mediated masking of Kp43 molecules interferes with recognition of HLA-B7 and results in target cell lysis. Moreover, in a redirected killing assay, the cross-linking of Kp43 molecules mediated by the XA185 mAb strongly inhibited the cytolytic activity of HLA-B7-specific NK clones, thus mimicking the functional effect of B7 molecules. Taken together, these data strongly suggest that Kp43 molecules function as receptors for HLA-B7 and that this receptor/ligand interaction results in inhibition of the NK-mediated cytolytic activity. Indirect immunofluorescence and FACS analysis of a large number of random NK clones showed that Kp43 molecules (a) were brightly expressed on a subset of p58-negative clones, corresponding to those specific for HLA-B7; (b) displayed a medium/low fluorescence in the p58-negative clones that are not B7-specific as well as in most p58+ NK clones; and (c) were brightly expressed as in the p58+ clone ET34 (GL183-/EB6+, Cw4-specific). Functional analysis revealed that Kp43 functioned as an inhibitory receptor only in NK clones displaying bright fluorescence. These studies also indicate that some NK clones (e.g., the ET34) can coexpress two distinct receptors (p58 and Kp43) for different class I alleles (Cw4 and B7). Finally, we show that Kp43 molecules function as receptors only for some HLA-B alleles and that still undefined receptor(s) must exist for other HLA-B alleles including B27.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 927-927
Author(s):  
Joseph H. Chewning ◽  
Charlotte N. Gudme ◽  
Bo Dupont

Abstract The role of Natural Killer (NK) cells in host protection against viral infection and malignant transformation has been well described. NK cells may also lead to a reduction in post-transplant relapse and improved survival in hematopoietic stem cell transplantation (HSCT) for acute myelogenous leukemia (AML). It has been hypothesized that the genotype for the inhibiting killer immunoglobulin-like receptor (KIR) of the hematopoietic stem cell donor in combination with the HLA class I genotype of the recipient could control NK alloreactivity leading to a reduction in post-transplant complications. The KIR gene family encodes however both activating and inhibiting receptors. Here we test the hypothesis that activating KIRs with ligand specificity for HLA class I may contribute to alloreactivity, and potentially could be a genetic factor of significance in allogeneic HSCT. We tested this hypothesis in studies of two pairs of inhibiting and activating KIRs with highly homologous codon sequences in the extracellular domain, namely KIR2DL2/3-KIR2DS2 and KIR2DL1-KIR2DS1. Both the inhibitory 2DL1 and activating 2DS1 have ligand specificity for HLA-Cw group 2, and 2DL2 and 2DL3, have ligand specificity for HLA-Cw group 1, while the activating 2DS2 does not bind in vitro to C1 group. Using an EBV-transformed B-lymphoblastoid cell line (EBV-BLCL) target cell panel homozygous for HLA Class I alleles, we found that NK cells from donors with KIR haplotypes lacking KIR2DS1 or 2DS2 were not cytotoxic to allogeneic EBV-BLCL, independent of the target HLA class I genotype. Polyclonal NK cells obtained from KIR2DS1 positive and C1 group positive donors mediated NK cytotoxicity against C2 positive targets. In contrast, NK cells from KIR2DS1 positive, C2 group homozygous donors displayed minimal cytotoxicity against the C2 group targets (p<0.01). NK clones generated from 2DS1 positive, C2-group negative individuals were cytotoxic to C2-group target cells, while such NK clones could not be obtained from individuals positive for 2DS1 and cognate ligands. Similar findings were made for the relationship between 2DS2, 2DL2/3 and cognate ligand C1 group. Both polyclonal IL-2 propagated NK cells and NK clones from individuals positive for 2DS2 and homozygous for C2 group displayed specific cytotoxicity against C1 positive target cells. The cytotoxicity of 2DS2 positive, C1 group positive NK cells against the C1 positive BLCLs was minimal (p<0.01). These studies demonstrate that 2DS1 and 2DS2 are activating receptors that can induce an alloantigen response. We also present a model for combinations of KIR and HLA genotypes in which the allogeneic function of KIR2DS1 and 2DS2 is consistently seen in donor NK cells. Activating KIR may therefore play a role in allogeneic HSCT, and could contribute to the balance between activating and inhibiting signals for NK cells in HLA-Cw incompatible donor-recipient combinations. Activating KIR interactions with cognate ligand could potentially also play a role in the innate immune response. In the normal host, the increased affinity of the inhibiting KIR isoforms for HLA class I may prevent auto-reactivity, while the activating isoforms may only function in an HLA restricted pattern in context of specific pathogens or transformed cells. It is possible that the low affinity activating KIR may require additional co-stimulating signals that are up-regulated during cellular stress.


1999 ◽  
Vol 189 (7) ◽  
pp. 1093-1100 ◽  
Author(s):  
Sumati Rajagopalan ◽  
Eric O. Long

Human natural killer (NK) cells express several killer cell immunoglobulin (Ig)-like receptors (KIRs) that inhibit their cytotoxicity upon recognition of human histocompatibility leukocyte antigen (HLA) class I molecules on target cells. Additional members of the KIR family, including some that deliver activation signals, have unknown ligand specificity and function. One such KIR, denoted KIR2DL4, is structurally divergent from other KIRs in the configuration of its two extracellular Ig domains and of its transmembrane and cytoplasmic domains. Here we show that recombinant soluble KIR2DL4 binds to cells expressing HLA-G but not to cells expressing other HLA class I molecules. Unlike other HLA class I–specific KIRs, which are clonally distributed on NK cells, KIR2DL4 is expressed at the surface of all NK cells. Furthermore, functional transfer of KIR2DL4 into the cell line NK-92 resulted in inhibition of lysis of target cells that express HLA-G, but not target cells that express other class I molecules including HLA-E. Therefore, given that HLA-G expression is restricted to fetal trophoblast cells, KIR2DL4 may provide important signals to maternal NK decidual cells that interact with trophoblast cells at the maternal–fetal interface during pregnancy.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4715-4715
Author(s):  
James Weitzman ◽  
Monica Betancur ◽  
Laurent Boissel ◽  
Arthur P. Rabinowitz ◽  
Hans Klingemann

Abstract Chronic Lymphocytic Leukemia (CLL) is characterized by the expression of the B-cell antigens CD19, 20 and 22, along with CD5 and CD23. These antigens make the malignant cells an ideal target for monoclonal antibody (mAb) therapy. Although the mechanism of action of mAbs is complex and not fully understood, one well-described action is antibody-dependent cellular cytotoxicity (ADCC). Binding of mAb to its target surface antigen initiates cytotoxicity through the interaction of the Fc portion of the mAb with the Fc receptor (FcR) on natural killer (NK) cells. This triggers release of perforin and granzymes from NK cells, and subsequent killing of the target cells. This study’s objectives were to measure ADCC of 4 different mAbs against primary CLL cells, and determine if cytotoxicity is dependent on antigen density. Methods: Mononuclear cells from 16 patients with untreated CLL were separated by density gradient separation and served as targets. The antigen density for CD20, 22 and 23 of each patient sample was quantified by flow cytometry. Effector cells for ADCC were NK-92 cells that do not express FcR, and a high affinity Fc receptor-expressing NK-92 variant (NK92.26.5) that also expresses inhibitory receptors (i.e. KIR). A fluourochrome-based flow cytometric assay determined ADCC by subtracting NK-92 induced cytotoxicity from NK-92.26.5 induced killing. Monoclonal antibodies tested were Rituximab (anti-CD20, Biogen/IDEC), Veltuzumab (anti-CD20, Immunomedics), Epratuzumab (anti-CD22, Immunomedics), and Lumiliximab (anti-CD23, Biogen/IDEC). Results: Mean ADCC of the four antibodies tested against 16 primary CLL cells were: 46.5% for Rituximab; 43.4% for Veltuzumab; 5.8% for Epratuzumab; 8.8% for Lumiliximab. Cytotoxicity of NK-92 and NK-92.26.5 against CLL cells without antibody ranged from 2–6%. Mean antigen density on the 16 CLL patient specimens were: CD20: 27,900 (range: 10,000–56,100); CD22: 820 (600–1300); CD23: 9870 (2340–14,800). Conclusions: We have developed a reliable in vitro assay to measure ADCC of mAbs against CLL cells. Our results indicate that ADCC contributes to cytotoxcity of CLL in vitro, and suggest that the magnitude of ADCC depends upon the surface antigen targeted. Anti-CD20 antibodies had significantly greater ADCC than the anti-CD22 and CD23 antibodies. This pattern was consistent in all patient cells tested. A similar pattern was observed with the surface antigen density on CLL cells tested, suggesting a correlation between cell surface antigen density and ADCC. Our results also suggest that resistance of primary CLL cells toward NK-mediated killing can be overcome by monoclonal antibodies even in the presence of inhibitory KIR expression on NK cells.


2019 ◽  
Vol 2 (6) ◽  
pp. e201900434
Author(s):  
Jason Pugh ◽  
Neda Nemat-Gorgani ◽  
Zakia Djaoud ◽  
Lisbeth A Guethlein ◽  
Paul J Norman ◽  
...  

During development, NK cells are “educated” to respond aggressively to cells with low surface expression of HLA class I, a hallmark of malignant and infected cells. The mechanism of education involves interactions between inhibitory killer immunoglobulin–like receptors (KIRs) and specific HLA epitopes, but the details of this process are unknown. Because of the genetic diversity of HLA class I genes, most people have NK cells that are incompletely educated, representing an untapped source of human immunity. We demonstrate how mature peripheral KIR3DL1+ human NK cells can be educated in vitro. To accomplish this, we trained NK cells expressing the inhibitory KIR3DL1 receptor by co-culturing them with target cells that expressed its ligand, Bw4+HLA-B. After this training, KIR3DL1+ NK cells increased their inflammatory and lytic responses toward target cells lacking Bw4+HLA-B, as though they had been educated in vivo. By varying the conditions of this basic protocol, we provide mechanistic and translational insights into the process NK cell education.


1993 ◽  
Vol 178 (4) ◽  
pp. 1321-1336 ◽  
Author(s):  
V Litwin ◽  
J Gumperz ◽  
P Parham ◽  
J H Phillips ◽  
L L Lanier

Prior studies using polyclonal populations of natural killer (NK) cells have revealed that expression of certain major histocompatibility complex (MHC) class I molecules on the membrane of normal and transformed hematopoietic target cells can prevent NK cell-mediated cytotoxicity. However, the extent of clonal heterogeneity within the NK cell population and the effect of self versus non-self MHC alleles has not been clearly established. In the present study, we have generated more than 200 independently derived human NK cell clones from four individuals of known human histocompatibility leukocyte antigens (HLA) type. NK clones were analyzed for cytolytic activity against MHC class I-deficient Epstein Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCL) stably transfected with several HLA-A, -B, or -C genes representing either self or non-self alleles. All NK clones killed the prototypic HLA-negative erythroleukemia K562 and most lysed the MHC class I-deficient C1R and 721.221 B-LCL. Analysis of the panel of HLA-A, -B, and -C transfectants supported the following general conclusions. (a) Whereas recent studies have suggested that HLA-C antigens may be preferentially recognized by NK cells, our findings indicate that 70% or more of all NK clones are able to recognize certain HLA-B alleles and many also recognize HLA-A alleles. Moreover, a single NK clone has the potential to recognize multiple alleles of HLA-A, HLA-B, and HLA-C antigens. Thus, HLA-C is not unique in conferring protection against NK lysis. (b) No simple patterns of HLA specificity emerged. Examination of a large number of NK clones from a single donor revealed overlapping, yet distinct, patterns of reactivity when a sufficiently broad panel of HLA transfectants was examined. (c) Both autologous and allogeneic HLA antigens were recognized by NK clones. There was neither evidence for deletion of NK clones reactive with self alleles nor any indication for an increased frequency of NK clones recognizing self alleles. (d) With only a few exceptions, protection conferred by transfection of HLA alleles into B-LCL was usually not absolute. Rather a continuum from essentially no protection for certain alleles (HLA-A*0201) to very striking protection for other alleles (HLA-B*5801), with a wide range of intermediate effects, was observed. (e) Whereas most NK clones retained a relatively stable HLA specificity, some NK clones demonstrated variable and heterogeneous activity over time. (f) NK cell recognition and specificity cannot be explained entirely by the presence or absence of HLA class I antigens on the target cell.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3859-3859
Author(s):  
Anri Saito ◽  
Miwako Narita ◽  
Toshio Yano ◽  
Naoko Sato ◽  
Asuka Sekiguchi ◽  
...  

Abstract Transfection with tumor antigen RNA is one of the promising tools not only because of a possible sufficient amplification of tumor antigen RNA but also because of the absence of antigen peptides-associated MHC restriction. Several succeeded experiments about generation of CTLs using DCs transfeced in vitro transcribed (IVT) cancer specific antigen mRNA such as PSA, CEA, hTERT and MUC-1 have been reported in these a few years. In addition, recent reports about the simultaneous presentation of peptides in both MHC class I and class II molecules on DCs after mRNA electroporation show another superiority of mRNA transfection into DCs. In this presentation, we demonstrate successful generation of tumor antigen specific CTLs using with DCs transfected with IVT mRNA such as SART-1 and WT-1 by electroporation. This is the first report about the generation of SART-1 and WT-1 specific CTLs by using mRNA transfected DCs. [Methods] HLA-A24 positive human PB CD14+ cell-derived DCs were transfected with IVT mRNA (SART-1and WT-1) by electroporation. MRNA transfected DCs were co-cultured with autologous lymphocytes. The bulk co-cultures were re-stimulated several times with same DCs. CD8+ cells were separated and CTL activity was evaluated by 51chromium release assay. To determine whether the induced CTL cells could recognize the target cells in an HLA class I restricted manner, anti-HLA class I monoclonal antibodies were utilized to block the cytotoxicity of effectors. [Results] Electroporation of mRNA showed no effect on the surface phenotypes and antigen presenting ability of DCs. In addition to the demonstration of efficient transfection of M1 mRNA into DCs by using RT-PCR, which eliminated the amplification of transfected mRNA by the treatment with RNase before RNA extraction from the transfected cells, we identified the definite expression of WT-1 protein in the cytoplasm of DCs by using immunoblotting. CTL assay indicated that 1) DCs transfected with mRNA stimulated the generation of antigen-specific CTLs which are capable of lysing autologous DCs transfected with the same mRNA. 2) CTLs also demonstrated cytotoxic ability against cell lines such as KE-4 presenting SART-1 peptides on HLA-A24, MEGO1 presenting WT-1 peptides on MHC class I, and HLA-A24 cDNA transfected T2 which were used as target cells after co- incubation with 9 mer SART-1 peptides with strong affinity to HLA-A24. 3) Each cytotoxicities were markedly blocked after co-incubation of target cells with anti-MHC class I antibody and not inhibited with anti-MHC class II antibody. [Conclusion] Our results showed that IVT mRNA-transfected DCs which is constructed non-virally have a highly efficient ability to stimulate specific T-cell immunity against tumor. Unlike peptide- or tumor cells extract-pulsed DCs based vaccines, anti-tumor immunotherapy using the DCs transfected with antigen mRNA could be extended to a wide range of patients who have previously been excluded from clinical trials for the reason of the un-identification of tumor specific antigens, for the reason of the impossibility of obtaining sufficient tumor specimens, or for the reason of MHC restriction of the tumor specific antigens.


Sign in / Sign up

Export Citation Format

Share Document