A Novel Mechanism of ADAMTS13 Deficiency in Mice.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3668-3668
Author(s):  
Wenhua Zhou ◽  
Lingli Dong ◽  
Eric E. Bouhassira ◽  
Han-Mou Tsai

Abstract Background. ADAMTS13, a circulating metalloprotease that cleaves conformationally altered von Willebrand factor (VWF), is critical for preventing microvascular thrombosis. Deficiency of the protease, due to genetic mutations or autoimmune inhibitors, causes thrombotic thrombocytopenic purpura. In the course of investigating the regulation of ADAMTS13, we noted that mice differed widely in their plasma ADAMTS13 activity levels. In order to understand the factors affecting plasma ADAMTS13 levels, we examined the molecular basis of ADAMTS13 variation in different strains of mice. Methods. Plasma ADAMTS13 activity level was determined by previously described SDS PAGE and immunoblotting. ADAMTS13 transcripts were analyzed by RT PCR, RACE, nucleotide sequencing, and real-time RT PCR. Plasmids containing the cDNA of mouse ADAMTS13 were constructed for transfection of mammalian cell lines. Results. The mouse strains FVB/NJ and 129X1/SvJ differed from C57BL/6J and DBA/2J by more than 10 folds in their plasma ADAMTS13 activity levels (3.09 +/− 0.45 vs 0.24 +/− 0.11 U/mL for FVB/NJ and C57BL/6J respectively, P < 0.0001). To determine the causes of the difference, we analyzed the ADAMTS13 transcripts by using RT PCR and RACE, which showed that the FVB/NJ mice contained the predicted full-length ADAMTS13 transcript with a domain structure similar to human ADAMTS13, while the C57BL/6J mice contained at least 4 isoforms: the full-length transcript, one internal splicing isoform, and two truncated forms that ended with an extraneous sequence homologous to the long-terminal repeat (LTR) of an retrotransposone of the IAP type. Comparison of the genomic sequences showed that the ADAMTS13 gene of C57BL/6J mice contained in its intron #23 an IAP-type retrotransposone sequence whose LTR sequence with a stop codon was included in the mouse transcripts. The IAP retrotransposone sequence, which contained one base substitution at the 5′-end 4-base repeat (tgtt>g) and was flanked at both ends by a 6-base repeat (cactag), was also present in the DBA/2J but not the 129X1/SvJ strains of mice. Real-time RT PCR showed that the FVB/NJ and C57BL/6J mice had similar levels of ADAMTS13 transcripts in the liver. Nevertheless in the C57BL/6J mice the IAP-truncated forms accounted for >90% of the ADAMTS13 transcripts. Expression of mouse ADAMTS13 cDNA in mammalian cell lines revealed that the both the full-length and the IAP-truncated forms of the ADAMTS13 protease were similar in VWF-cleaving activity. Conclusion. This study shows the presence of intragenic retrotransposone in the ADAMTS13 gene of some mouse strains. The presence of an IAP-retrotransposone within the ADAMTS13 gene of C57BL/6J mice affects the splicing of the ADAMTS13 transcripts, creating truncated forms of the protease that lack the last two TSP-1 and the CUB domains but remain proteolytically active in cleaving VWF. The lower plasma ADAMTS13 activity level of C57BL/6J may result from abnormal intravascular clearance of the protease or other post-secretory events.

Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 886-893 ◽  
Author(s):  
Wenhua Zhou ◽  
Eric E. Bouhassira ◽  
Han-Mou Tsai

AbstractSevere deficiency of ADAMTS13, a von Willebrand factor (VWF)–cleaving metalloprotease, causes thrombotic thrombocytopenic purpura. When analyzed with VWF multimers, but not with an abbreviated VWF peptide (VWF73) as the substrate, the plasma ADAMTS13 activity levels of mouse strains segregated into a high and a low group that differed by approximately 10 fold. Low ADAMTS13 activity was detected in mice containing 2 alleles of intracisternal A-type particle (IAP) retrotransposon sequence in the ADAMTS13 gene. Molecular cloning of mouse ADAMTS13 identified 2 truncated variants (IAP-a and IAP-b) in the low-activity mice. Both of the IAP variants lacked the 2 carboxyl terminus thrombospondin type 1 repeat (TSR) and CUB domains of full-length ADAMTS13. The IAP-b variant also had splicing abnormalities affecting the spacer domain sequence and had miniscule enzymatic activity. Compared with full-length ADAMTS13, the IAP-a variant was approximately one ninth as active in cleaving VWF multimers but was only slightly less active in cleaving VWF73 peptide. Recombinant human ADAMTS13 was also less effective in cleaving VWF multimers than VWF73 when the C-terminal TSR sequence was deleted. In summary, the carboxyl terminus TSR sequence is important for cleaving VWF multimers. Assay results should be interpreted with caution when peptide substrates are used for analysis of variant ADAMTS13 proteins.


2014 ◽  
Vol 106 (2) ◽  
pp. 365a
Author(s):  
Chiara Ghezzi ◽  
Guillaume Calmettes ◽  
Bernard Ribalet ◽  
Scott John

1991 ◽  
Vol 193 (2) ◽  
pp. 331-338 ◽  
Author(s):  
Sylvie Dufour ◽  
Alejandro Gutman ◽  
Florence Bois ◽  
Ned Lamb ◽  
Jean Paul Thiery ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alessandro T. Caputo ◽  
Oliver M. Eder ◽  
Hana Bereznakova ◽  
Heleen Pothuis ◽  
Albert Ardevol ◽  
...  

AbstractPuromycin and the Streptomyces alboniger-derived puromycin N-acetyltransferase (PAC) enzyme form a commonly used system for selecting stably transfected cultured cells. The crystal structure of PAC has been solved using X-ray crystallography, revealing it to be a member of the GCN5-related N-acetyltransferase (GNAT) family of acetyltransferases. Based on structures in complex with acetyl-CoA or the reaction products CoA and acetylated puromycin, four classes of mutations in and around the catalytic site were designed and tested for activity. Single-residue mutations were identified that displayed a range of enzymatic activities, from complete ablation to enhanced activity relative to wild-type (WT) PAC. Cell pools of stably transfected HEK293 cells derived using two PAC mutants with attenuated activity, Y30F and A142D, were found to secrete up to three-fold higher levels of a soluble, recombinant target protein than corresponding pools derived with the WT enzyme. A third mutant, Y171F, appeared to stabilise the intracellular turnover of PAC, resulting in an apparent loss of selection stringency. Our results indicate that the structure-guided manipulation of PAC function can be utilised to enhance selection stringency for the derivation of mammalian cell lines secreting elevated levels of recombinant proteins.


Sign in / Sign up

Export Citation Format

Share Document