Deliniation of the Ex Vivo Culture Conditions Supporting the Long-Term Engraftment of Cord Blood CD34+ Cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4954-4954
Author(s):  
Ronald L. Brown ◽  
J. Zhang ◽  
L. Qiu ◽  
A. Nett ◽  
G. Almeida-Porada ◽  
...  

Abstract Ex-vivo expansion regimens for cord blood (CB) CD34+ cells that maintain their long term engrafting ability hold great promise for adult transplantation but have been met with relatively little success. Data presented delineate the development of a cell cu1ture system composed of clinical grade serum-free medium (QBSF 60) and a cytokine combination that not only yields large numbers of CD34+ cell populations but also supports the long term engraftment of these cells. CBCD34+ cells were cultured for over 14 days in QBSF 60 medium supplemented with the following cytokine combination a.) SCF, Flt-3 and TPO, b.) SCF, Flt-3 and IL-6, c.) SCF, Flt-3 TPO and IL-3, d.) SCF Flt-3, TPO and IL-6, e.) SCF, Flt-3, TPO and IL-11, f.) SCF, Flt-3, TPO, IL-3, IL-6 and IL-11, g.) SCF, Flt-3, TPO, IL-3, IL-6, IL-11, G-CSF, and EPO. The following cytokine concentrations was used for each of the above combinations: SCF (50 ng/ml), Flt-3 (100 ng/ml), TPO (100 ng/ml), IL-3 (20 ng/ml), IL-6 (50 ng/ml), IL-11 (50 ng/ml), G-CSF (50 ng/ml) and EPO (10U), or 10 times lower concentrations of each cytokine. The ex vivo cultured were evaluated for the following cell populations: total nucleated cells, CD34+ cells, CD34+ CD38− cells, CFU-C, HPP-CFU, and LTC-IC. In all cases those combinations of cytokines containing either IL-3 and/or IL-6 yielded higher quantities of all the cellular populations studied. Those culture conditions having the fewest cytokines that yielded large quantities of total cells, CD34+ cells and/or CD34+ CD38− cells were subsequently examined after 14 days of culture for their long-term engrafting ability in the fetal sheep model for human hematopoiesis. Typically, after 14 days of ex vivo culture CD34+ cells fail to engraft long-term, therefore, all our cultures were maintained for at least this time frame. Based on these criteria, CD34+ cells cultured in the presence of the higher concentration of cytokines a, b d and f were examined. The cultured CD 34+ cells from all four cytokine combinations engraft and undergo multilineage differentiation in primary recipients (short-term engraftment) examined 63 days post-transplant. By contrast the secondary recipients (long-term engraftment) after 61 days post-transplant showed no engraftment from cells cultured in cytokine combinations a and f, very few human cells were found in secondary recipients engrafted with cells from cytokine concentration b, but cells cultured in cytokine combination d (SCF, Flt-3, TPO and IL-6) maintained their long-term engrafting ability and undergo multilineage differentiation. In conclusion, cytokine combinations of TPO and IL-6 with SCF and Flt-3 yielded successful long-term engraftment. The presence of IL-3 in any of there combinations supported excellent cellular proliferation and the increase in the various cell populations but failed to support engraftment. These studies suggest that it is possible to maintain/expand long-term engrafting CB stem cells after 14 days under clinically relevant culture conditions.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Daisuke Araki ◽  
Stefan Cordes ◽  
Fayaz Seifuddin ◽  
Luigi J. Alvarado ◽  
Mehdi Pirooznia ◽  
...  

Notch activation in human CD34+ hematopoietic stem/progenitor cells (HSPCs) by treatment with Delta1 ligand has enabled clinically relevant ex vivo expansion of short-term HSPCs. However, sustained engraftment of the expanded cells was not observed after transplantation, suggesting ineffective expansion of hematopoietic stem cells with long-term repopulating activity (LTR-HSCs). Recent studies have highlighted how increased proliferative demand in culture can trigger endoplasmic reticulum (ER) stress and impair HSC function. Here, we investigated whether ex vivo culture of HSPCs under hypoxia might limit cellular ER stress and thus offer a simple approach to preserve functional HSCs under high proliferative conditions, such as those promoted in culture with Delta1. Human adult mobilized CD34+ cells were cultured for 21 days under normoxia (21% O2) or hypoxia (2% O2) in vessels coated with optimized concentrations of Delta1. We observed enhanced progenitor cell activity within the CD34+ cell population treated with Delta1 in hypoxia, but the benefits provided by low-oxygen cultures were most notable in the primitive HSC compartment. At optimal coating densities of Delta1, the frequency of LTR-HSCs measured by limiting dilution analysis 16 weeks after transplantation into NSG mice was 4.9- and 4.2-fold higher in hypoxic cultures (1 in 1,586 CD34+ cells) compared with uncultured cells (1 in 7,706) and the normoxia group (1 in 5,090), respectively. Conversely, we observed no difference in expression of the homing CXCR4 receptor between cells cultured under normoxic and hypoxic conditions, indicating that hypoxia increased the absolute numbers of LTR-HSCs but not their homing potential after transplantation. To corroborate these findings molecularly, we performed transcriptomic analyses and found significant upregulation of a distinct HSC gene expression signature in cells cultured with Delta1 in hypoxia (Fig. A). Collectively, these data show that hypoxia supports a superior ex vivo expansion of human HSCs with LTR activity compared with normoxia at optimized densities of Delta1. To clarify how hypoxia improved Notch-mediated expansion of LTR-HSCs, we performed scRNA-seq of CD34+ cells treated with Delta1 under normoxic or hypoxic conditions. We identified 6 distinct clusters (clusters 0 to 5) in dimension-reduction (UMAP) analysis, with a comparable distribution of cells per cluster between normoxic and hypoxic cultures. Most clusters could be computationally assigned to a defined hematopoietic subpopulation, including progenitor cells (clusters 0 to 4) and a single transcriptionally defined HSC population (cluster 5). To assess the relative impact of normoxia and hypoxia on the HSC compartment, we performed gene set enrichment analysis (GSEA) of cells within HSC cluster 5 from each culture condition. A total of 32 genes were differentially expressed, and pathways indicative of cellular ER stress (unfolded protein response [UPR], heat shock protein [HSP] and chaperone) were significantly downregulated in hypoxia-treated cells relative to normoxic cultures (Fig. B). When examining expression of cluster 5 top differentially expressed genes across all cell clusters, we observed a more prominent upregulation of these genes within transcriptionally defined HSCs exposed to normoxia relative to more mature progenitors (Fig. C, red plots). Hypoxia lessened the cellular stress response in both progenitors and HSCs, but the mitigation was more apparent in the HSC population (Fig. C, grey plots), and decreased apoptosis was observed only within the HSC-enriched cluster 5 (Fig. D). These findings are consistent with several reports indicating that HSCs are more vulnerable to strong ER stress than downstream progenitors due to their lower protein folding capacity. In conclusion, we provide evidence that ex vivo culture of human adult CD34+ cells under hypoxic conditions enables a superior Delta1-mediated expansion of hematopoietic cells with LTR activity compared with normoxic cultures. Our data suggest a two-pronged mechanism by which optimal ectopic activation of Notch signaling in human HSCs promotes their self-renewal, and culture under hypoxia mitigates ER stress triggered by the increased proliferative demand, resulting in enhanced survival of expanding HSCs. This clinically feasible approach may be useful to improve outcomes of cellular therapeutics. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1243-1255 ◽  
Author(s):  
Mo A. Dao ◽  
Ami J. Shah ◽  
Gay M. Crooks ◽  
Jan A. Nolta

Abstract Retroviral-mediated transduction of human hematopoietic stem cells to provide a lifelong supply of corrected progeny remains the most daunting challenge to the success of human gene therapy. The paucity of assays to examine transduction of pluripotent human stem cells hampers progress toward this goal. By using the beige/nude/xid (bnx)/hu immune-deficient mouse xenograft system, we compared the transduction and engraftment of human CD34+progenitors with that of a more primitive and quiescent subpopulation, the CD34+CD38− cells. Comparable extents of human engraftment and lineage development were obtained from 5 × 105 CD34+ cells and 2,000 CD34+CD38− cells. Retroviral marking of long-lived progenitors from the CD34+ populations was readily accomplished, but CD34+CD38− cells capable of reconstituting bnx mice were resistant to transduction. Extending the duration of transduction from 3 to 7 days resulted in low levels of transduction of CD34+CD38− cells. Flt3 ligand was required during the 7-day ex vivo culture to maintain the ability of the cells to sustain long-term engraftment and hematopoiesis in the mice.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1329-1329
Author(s):  
Aleksandra Rizo ◽  
Edo Vellenga ◽  
Gerald de Haan ◽  
Jan Jacob Schuringa

Abstract Hematopoietic stem cells (HSCs) are able to self-renew and differentiate into cells of all hematopoietic lineages. Because of this unique property, they are used for HSC transplantations and could serve as a potential source of cells for future gene therapy. However, the difficulty to expand or even maintain HSCs ex vivo has been a major limitation for their clinical applications. Here, we report that overexpression of the Polycomb group gene Bmi-1 in human cord blood-derived HSCs can potentially overcome this limitation as stem/progenitor cells could be maintained in liquid culture conditions for over 16 weeks. In mouse studies, it has been reported that increased expression of Bmi-1 promotes HSC self-renewal, while loss-of-function analysis revealed that Bmi-1 is implicated in maintenance of the hematopoietic stem cells (HSC). In a clinically more relevant model, using human cord blood CD34+ cells, we have established a long-term ex-vivo expansion method by stable overexpression of the Bmi-1 gene. Bmi-1-transduced cells proliferated in liquid cultures supplemented with 20% serum, SCF, TPO, Flt3 ligand, IL3 and IL6 for more than 4 months, with a cumulative cell expansion of more then 2×105-fold. The cells remained cytokine-dependent, while about 4% continued to express CD34 for over 20 weeks of culture. The cultured cells retained their progenitor activity throughout the long-term expansion protocol. The colony-forming units (CFUs) were present at a frequency of ~ 30 colonies per 10 000 cells 16 weeks after culture and consisted of CFU-GM, BFU-E and high numbers of CFU-GEMM type progenitors. After plating the transduced cells in co-cultures with the stromal cell line MS5, Bmi-1 cells showed a proliferative advantage as compared to control cells, with a cumulative cell expansion of 44,9 fold. The non-adherent cells from the co-cultures gave rise to higher numbers of colonies of all types (~70 colonies/10.000 cells) after 4 weeks of co-culture. The LTC-IC frequencies were 5-fold higher in the Bmi-1-transduced cells compared to control cells (1/361 v.s. 1/2077, respectively). Further studies will be focused on in-vivo transplantation of the long-term cultured cells in NOD/SCID mice to test their repopulating capacity. In conclusion, our data implicate Bmi-1 as an important modulator of human HSC self-renewal and suggest that it can be a potential target for therapeutic manipulation of human HSCs.


2001 ◽  
Vol 114 (2) ◽  
pp. 433-443 ◽  
Author(s):  
Alison M. Rice ◽  
Julie A. Wood ◽  
Christopher G. Milross ◽  
Cathryn J. Collins ◽  
Jamie Case ◽  
...  

Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1680-1693 ◽  
Author(s):  
CC Fraser ◽  
H Kaneshima ◽  
G Hansteen ◽  
M Kilpatrick ◽  
R Hoffman ◽  
...  

The ability to determine the functional capacity of putative human hematopoietic stem cell (HSC) populations requires in vivo assays in which long-term multilineage differentiation can be assessed. We hypothesized that if human fetal bone was transplanted adjacent to a fetal thymus fragment in severe combined immunodeficient (SCID) mice, a conjoint organ might form in which HSC in the human bone marrow (BM) would mimic human multilineage differentiation into progenitor cells, B cells, and myeloid cells; undergo self-renewal; and migrate to and differentiate into T cells within the thymic microenvironment. To test this possibility, SCID mice were transplanted subcutaneously with HLA class I mismatched fetal bone, thymus, and spleen fragments (SCID-hu BTS). We found that the BM of SCID-hu BTS grafts maintained B cells, myeloid cells, CD34+ cells for at least 36 weeks posttransplant. Assayable hematopoietic progenitors colony-forming units-granulocyte- macrophage were present in 100% (66/66) of grafts over a period of 28 weeks. Cells with a HSC phenotype (CD34+Thy-1+Lin-) were maintained for 20 weeks in SCID-hu BTS grafts. These CD34+Thy-1+Lin- cells had potent secondary multilineage reconstituting potential when isolated and injected into a secondary HLA mismatched SCID-hu bone assay and analyzed 8 weeks later. In addition, early progenitors within the BM of SCID-hu BTS grafts were capable of migrating to the human thymus and undergoing differentiation through immature CD4+CD8+ double-positive T cells and produce mature T cells with a CD4+CD8- or CD8+CD4- phenotype that could be detected for at least 36 weeks. Phenotypically defined human fetal liver (FL) and umbilical cord blood (UCB) hematopoietic stem cell populations were injected into irradiated SCID-hu BTS grafts to assess their multilineage repopulating capacity and to assess the ability of the BTS system to provide an environment where multiple lineages might differentiate from a common stem cell pool. Injection of irradiated grafts with FL HSC or UCB HSC cells resulted in donor- derived B cells, myeloid cells, immature and mature T cells, and CD34+ cells in individual grafts when analyzed 8 weeks postreconstitution, further showing the multipotential nature of these stem cell populations. In addition, a strong correlation was observed between maintenance of host graft-derived CD8+ cells and failure of donor stem cell engraftment.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-42-SCI-42
Author(s):  
Michael P. Cooke ◽  
Anthony E. Boitano

Abstract SCI-42 The identification of safe and effective methods to expand human hematopoietic stem cells (HSC) would have a major impact on the use of HSC in clinical medicine. Several features of human HSC, including the lack of a suitable cell line model and cumbersome methods for quantification, have made the identification of conditions for human HSC expansion challenging. Current culture methods using cytokine cocktails in serum-free media support the robust proliferation of CD34 positive (CD34+) cells but this is accompanied by rapid differentiation such that after 1 week of culture fewer than 20% of cells continue to express CD34. To overcome these limitations we developed a high throughput screen that uses primary human CD34+ cells and multiparameter flow cytometry to identify compounds capable of expanding human CD34 positive cells. By screening >100,000 LMW compounds we identified a molecule (SR1) that enhanced CD34 expression during ex vivo culture. Culture of CD34+ cells with cytokines and SR1 for 3 weeks leads to a >600-fold increase in the number of CD34+ cells, and a >2000-fold increase in the number of CFU compared to starting cell numbers. Importantly, cells expanded in the presence of SR1contain a 17-fold increase in the number of NOD-SCID repopulating cells compared to starting cell numbers. Mechanistic studies reveal that SR1 binds to and antagonizes the aryl hydrocarbon receptor (AHR). Knockdown of the AHR in CD34+ cells using lentiviral transduction also maintains CD34 expression. These findings suggest that AHR normally promotes HSC differentiation during ex vivo culture and that AHR antagonists can be used to promote CD34 cell expansion. To determine the clinical utility of these findings, we have begun to explore the use of SR1 to expand CD34+ cells isolated from umbilical cord blood for clinical transplantation. To this end, we have developed a GMP compatible process to manufacture CD34 positive cells expanded with SR1 for use in cord blood transplantation. In addition, we have also explored the use of SR1 to prevent HSC differentiation during HSC transduction and enable manufacturing of differentiated blood cells. These data reveal AHR antagonism and SR1 treatment as a promising method to promote HSC expansion for clinical use. Disclosures: Cooke: Novartis: Employment. Boitano:Novartis: Employment.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3212-3217 ◽  
Author(s):  
T Abe ◽  
Y Takaue ◽  
Y Kawano ◽  
Y Kuroda

To investigate the effect of recombinant erythropoietin (Epo) on primitive human hematopoietic progenitor cells, we cultured cord blood mononuclear cells (CBMNC) and CB CD34+ cells in a Dexter-type long-term culture system (LTC), to which various concentrations of Epo were added at day 0 or 7, with or without direct contact with irradiated allogeneic human marrow stromal layers. In regular stroma-contact cultures, when CBMNC were inoculated, the addition of Epo at 1 to 10 U/mL induced a significant increase in LTC-initiating cells (LTC-IC), particularly in the myeloid component, compared with the control without Epo. Significantly more LTC-IC were generated by the delayed addition of Epo on day 7 than on day 0. On the other hand, when CD34+ cells were inoculated, physiologic concentrations of Epo (0.1 U/mL) induced a more than twofold increase in LTC-IC, which was attributed equally to both the myeloid and erythroid lineages, only when added on day 0. In stroma-noncontact cultures, which were created using a Transwell 0.4-micron microporous membrane filter, dose-dependent suppression of the myeloid component of LTC-IC was observed with a higher concentration of Epo (1 to 100 U/mL) when CBMNC was inoculated. On the other hand, without Epo, fourfold more LTC-IC was generated from CD34+ cells in stroma-noncontact than in stroma-contact cultures, which was then significantly augmented by the addition of Epo (0.1 or 10 U/mL) on day 0. This increase was due to both the myeloid and erythroid lineages. A higher concentration of Epo (100 U/mL) resulted in a decrease in LTC-IC, mainly in myeloid progeny, in all of the culture conditions. Hence, Epo may play an important physiologic role in the maintenance and proliferation of immature stem/progenitor cells, in close interaction with factors from marrow stromal cells.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 1089-1099 ◽  
Author(s):  
Andromachi Scaradavou ◽  
Luis Isola ◽  
Pablo Rubinstein ◽  
Yelena Galperin ◽  
Vesna Najfeld ◽  
...  

Abstract The purposes of the research reported here were first to explore a murine model for human placental and umbilical cord blood transplantation and second to evaluate the engraftment ability of ex vivo cultured hematopoietic cells. Murine near-term fetal and neonatal peripheral blood (FNPB) cells, genetically marked with the human multiple drug resistance transgene (MDR1) were used for syngeneic transplants into sublethally irradiated adult mice. Donor cells were transplanted either fresh and untreated, or after ex vivo culture in the presence of the hematopoietic growth factors recombinant murine stem cell factor, recombinant human interleukin-3 (rHu IL-3), and rHu IL-6, in a liquid culture system. To evaluate, count, and characterize FNPB progenitor cell-derived colonies, neonatal mouse mononuclear cells were cultured directly in methylcellulose with growth factors. To assess their ex vivo expansion ability, FNPB mononuclear cells were first cultured in liquid medium for 3 to 8 days and then transferred to semisolid assay plates. Evaluation of the cell counts after liquid culture showed a 1.4- to 11.6-fold increase, and the numbers of colonies observed in methylcellulose were similar to those produced by fresh FNPB cells. Donor-type engraftment was demonstrated by polymerase chain reaction (PCR) amplification of the human MDR1 transgene in the peripheral blood of all surviving animals (5 of 7 recipients of the fresh, and 3 of 8 recipients of the ex vivo–cultured cells) 2 to 4 months after transplantation. The proportion of donor leukocytes in the peripheral blood of the recipients (chimerism) was evaluated using fluorescence in situ hybridization (FISH) analysis 4 to 6 months after transplantation and ranged from 2% to 26%. In addition, bone marrow cultures were obtained from two recipient animals: one had received fresh-untreated cells and was evaluated 8 months after transplant, the other had received ex vivo cultured cells and was tested 14 months after grafting. The derived hematopoietic colonies were tested by PCR and the transgene was detected, conclusively proving long-term engraftment of donor cells. These results indicate that FNPB transplants can be successfully performed in sublethally irradiated mice with and without ex vivo culture. Long-term donor-type engraftment with sustained chimerism has been demonstrated. Thus, murine neonatal blood grafts can be used as an animal model for cord blood transplantation for gene therapy studies where complete myeloablation is not desirable and partial replacement of defective marrow may be sufficient. Furthermore, the possibility of numerically expanding hematopoietic progenitor cells contained in neonatal blood without affecting their engraftment ability could facilitate use of cord blood grafts in adult recipients.


Blood ◽  
2001 ◽  
Vol 97 (11) ◽  
pp. 3441-3449 ◽  
Author(s):  
Ian D. Lewis ◽  
Graca Almeida-Porada ◽  
Jingbo Du ◽  
Ihor R. Lemischka ◽  
Kateri A. Moore ◽  
...  

This report describes stroma-based and stroma-free cultures that maintain long-term engrafting hematopoietic cells for at least 14 days ex vivo. Umbilical cord blood (UCB) CD34+ cells were cultured in transwells above AFT024 feeders with fetal-liver-tyrosine-kinase (FL) + stem cell factor (SCF) + interleukin 7 (IL-7), or FL + thrombopoietin (Tpo). CD34+ progeny were transplanted into nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice or preimmune fetal sheep. SCID repopulating cells (SRC) with multilineage differentiation potential were maintained in FL-SCF-IL-7 or FL-Tpo containing cultures for up to 28 days. Marrow from mice highly engrafted with uncultured or expanded cells induced multilineage human hematopoiesis in 50% of secondary but not tertiary recipients. Day 7 expanded cells engrafted primary, secondary, and tertiary fetal sheep. Day 14 expanded cells, although engrafting primary and to a lesser degree secondary fetal sheep, failed to engraft tertiary recipients. SRC that can be transferred to secondary recipients were maintained for at least 14 days in medium containing glycosaminoglycans and cytokines found in stromal supernatants. This is the first demonstration that ex vivo culture in stroma-noncontact and stroma-free cultures maintains “long-term” engrafting cells, defined by their capacity to engraft secondary or tertiary hosts.


Sign in / Sign up

Export Citation Format

Share Document