Regulation of High Shear Rate Induced von Willebrand Factor Mediated Platelet Thrombi by ADAMTS-13 .

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 516-516
Author(s):  
Roberta Donadelli ◽  
Jennifer N. Orje ◽  
Miriam Galbusera ◽  
Giuseppe Remuzzi ◽  
Zaverio M. Ruggeri

Abstract ADAMTS-13 is a metalloproteinase that cleaves von Willebrand factor (VWF) at the peptide bond Tyr842-Met843 within the A2 domain of the mature subunit, thus contributing to the regulation of multimers size in the circulation. Cleavage is effective on newly released VWF bound to the surface of endothelial cells, but the extent to which the protease acts on circulating VWF or limits the adhesive properties of multimers during thrombus formation remains unclear. To begin to address these questions, we have established a real-time videomicroscopy technique to visualize the formation of platelet aggregates mediated by the binding of VWF A1 domain to the platelet membrane glycoprotein (GP) Ibα. In this process, single platelets first adhere to surface-immobilized VWF, and then bind soluble VWF from plasma and aggregate through a mechanism dependent on shear rate above a critical threshold. Platelet aggregates formed promptly when whole human blood containing the thrombin inhibitor D-phenyl alanyl-L-prolyl-L-arginine chloromethyl ketone dihydrochloride as an anticoagulant (80 μM) was perfused over immobilized VWF at wall shear rates above 10,000 s−1. The size of aggregates increased during the first 5 min of perfusion, then started to decrease and was less than 30% of maximum after 10 min of perfusion. When the metal ion chelator, EDTA (5mM), was added to the blood before perfusion, the size of aggregates was larger than in control blood and showed no decrease over a 10 min period. A similar result was obtained when plasma was removed and washed blood cells were suspended in a buffer containing 20 μg/ml purified VWF multimers, suggesting that a metal ion dependent plasma protease was responsible for the time-dependent reduction of platelet aggregate size. To evaluate this hypothesis, recombinant human ADAMTS-13 purified from the culture medium of stably transfected D. melanogaster cells was added to washed blood cells resuspended in buffer/VWF, and the suspension was perfused over immobilized VWF at shear rates above 10,000 s−1. In this case, VWF-mediated thrombi started to form but began to dissipate within 3 min. After 6 min, the size of thrombi was 30% or less of that seen in the absence of ADAMTS-13. When the latter was added to washed blood cells resuspended in buffer/VWF after 5 min of perfusion, when platelet aggregates had reached their maximum dimensions, a reduction in size to 30% or less of maximum occurred within 5 min. Pre-incubation of ADAMTS-13 with the blood cell/VWF suspension before perfusion did not accelerate or enhance the reduction of platelet aggregate size, indicating that the enzyme likely acts only under flow conditions and/or after VWF multimers are bound to platelet GP Ibα and exposed to shear stress. ADAMTS-13 also had no significant effect on the size of platelet thrombi formed onto collagen type I fibrils at shear rates as high as 6,000 s−1. These findings suggest that ADAMTS-13 provides a selective mechanism to regulate the size of platelet thrombi, but the effect may be limited to conditions under which the cohesion between platelets depends mainly on VWF binding induced by pathologically elevated shear stress.

Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 1943-1950 ◽  
Author(s):  
Roberta Donadelli ◽  
Jennifer N. Orje ◽  
Cristina Capoferri ◽  
Giuseppe Remuzzi ◽  
Zaverio M. Ruggeri

The metalloproteinase ADAMTS13 regulates the size of released von Willebrand factor (VWF) multimers bound to endothelial cells, but it is unknown whether it can cleave plasma VWF during thrombogenesis. To address this issue, we perfused blood over immobilized VWF and used videomicroscopy to visualize an activation-independent platelet aggregation process mediated by soluble VWF at shear rates greater than 10 000 s-1. At normal Ca2+ concentration, platelets formed rolling as well as surface-attached clusters that grew larger during the first 5 minutes but then lost more than 70% of their mass by 10 minutes. In contrast, platelet clusters were stable in size when metal ions were chelated, anti-ADAMTS13 IgG were added, or washed blood cells were perfused with purified VWF but no plasma. In the latter case, addition of recombinant ADAMTS13 reduced platelet cluster size by more than 70%. Incubating ADAMTS13 with VWF before perfusion did not prevent the initial platelet clustering, indicating that the enzyme may act on platelet-bound VWF under shear stress. At the concentrations tested, ADAMTS13 had no effect on platelet aggregates formed upon blood perfusion over collagen fibrils. ADAMTS13, therefore, may regulate thrombus size preferentially when the cohesion between platelets depends on VWF binding induced by pathologically elevated shear stress.


1994 ◽  
Vol 266 (3) ◽  
pp. H891-H897 ◽  
Author(s):  
P. Borgdorff ◽  
W. E. Kok ◽  
M. A. Vis ◽  
G. C. van den Bos

Extracorporeal circulation may have adverse effects on vascular reactivity. To reduce such effects, we recently coated a tube connecting the carotid and the distal femoral artery of rats with albumin. When we partially occluded this perfusion line, the reduction of flow was followed by a marked increase, which seemed not to be caused by autoregulation but by release of a vasodilator at the site of occlusion. In the present study, we investigated whether this vasodilator could originate from platelets aggregating under the influence of increased shear stress at the site of occlusion. Blood distal to the site of occlusion indeed contained numerous platelet aggregates that were not present before occlusion. Continuous recording with a photometric device showed that aggregation in the tube started before flow increased and ended before flow decreased again. Blockade of serotonin S1- and S2-receptors with methiothepin prevented the flow response. Estimated shear stress (231 +/- 17 dyn/cm2) and shear rate (6,370 +/- 478 s-1) at the site of occlusion were of the magnitude known to elicit platelet aggregation. Others have recently demonstrated that shear-induced platelet aggregation is mediated by binding of von Willebrand factor to platelet glycoprotein Ib, which is inhibited by aurintricarboxylic acid. This drug (35 mg/kg iv) completely abolished both platelet aggregation and flow increase in our experiments. These results suggest that the vasodilation during partial tube occlusion is mediated by serotonin released from platelets that aggregate as a result of high shear stress.


Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 705-711 ◽  
Author(s):  
J Harsfalvi ◽  
JM Stassen ◽  
MF Hoylaerts ◽  
E Van Houtte ◽  
RT Sawyer ◽  
...  

Calin from the saliva of the medicinal leech, Hirudo medicinalis, is a potent inhibitor of collagen mediated platelet adhesion and activation. In addition to inhibition of the direct platelet-collagen interaction, we presently demonstrate that binding of von Willebrand to coated collagen can be prevented by Calin, both under static and flow conditions in agreement with the occurrence of binding of Calin to collagen, confirmed by Biospecific Interaction Analysis. To define whether Calin acted by inhibiting the platelet-collagen or the platelet- von Willebrand factor (vWF)-collagen-mediated thrombus formation, platelet adhesion to different types of collagens was studied in a parallel-plate flow chamber perfused with whole blood at different shear rates. Calin dose-dependently prevented platelet adhesion to the different collagens tested both at high- and low-shear stress. The concentration of Calin needed to cause 50% inhibition of platelet adhesion at high-shear stress was some fivefold lower than that needed for inhibition of vWF-binding under similar conditions, implying that at high-shear stress, the effect of Calin on the direct platelet- collagen interactions, suffices to prevent thrombus formation. Platelet adhesion to extracellular matrix (ECM) of cultured human umbilical vein endothelial cells was only partially prevented by Calin, and even less so at a high-shear rather than a low-shear rate, whereas the platelet binding to coated vWF and fibrinogen were minimally affected at both shear rates. Thus, Calin interferes with both the direct platelet- collagen interaction and the vWF-collagen binding. Both effects may contribute to the inhibition of platelet adhesion in flowing conditions, although the former seems to predominate.


Author(s):  
Volker Huck ◽  
Po-chia Chen ◽  
Emma-Ruoqi Xu ◽  
Alexander Tischer ◽  
Ulrike Klemm ◽  
...  

The multimeric plasma glycoprotein von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand Disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet glycoprotein (GP)IIb/IIIa-dependent prothrombotic gain-of-function (GOF) for variant p.Pro2555Arg, located in the C4-domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small angle X-ray scattering, NMR spectroscopy, molecular dynamics simulations on the single C4-domain and dimeric wildtype and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF is not affecting the binding affinity of the C4-domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and show a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but which is not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4-domain as a novel anti-thrombotic drug target.


1997 ◽  
Vol 77 (03) ◽  
pp. 568-576 ◽  
Author(s):  
M M Frojmovic ◽  
A Kasirer-Friede ◽  
H L Goldsmith ◽  
E A Brown

SummaryWe previously showed that ADP activation of washed human platelets in plasma-free suspensions supports aggregation at moderate shear stress (0.4-1.6 Nm-2) in Poiseuille flow. Although most activated platelets expressed maximal fibrinogen-occupied GPIIb-IIIa receptors, aggregation appeared to be independent of bound fibrinogen, but blocked by the hexapeptide GRGDSP. Here, we tested the hypothesis that von Willebrand factor (vWF) secreted and expressed on activated platelets mediates aggregation at moderate shear rates from 300 to 1000 s_1 corresponding to shear stresses from 0.3 to 1.1 Nm-2. Relatively unactivated platelets (<15% expressing prebound fibrinogen) were prepared from acidified citrated platelet rich plasma (cPRP) by single centrifugation with 50 nM stable prostacyclin derivative ZK 36374 and resuspended in Tyrodes-albumin at 5 X 104 cells ε_1. Flow cytometric measurements with monoclonal antibody (mAb) 2.2.9 reporting on surface-bound vWF, and with mAb S12 reporting on a-granule secreted P-selectin, showed that 65% and 80%, respectively, of all platelets were maximally activated with respect to maximal secretion and surface expression of these proteins. “Resting” washed platelets exhibited both surface-bound vWF and significant P-selectin secretion. We showed that mAbs 6D1 and NMC4, respectively blocking the adhesive domains on the GPIb receptor recognizing vWF, and on the vWF molecule recognizing the GPIb receptor, partially inhibited ADP-induced aggregation under shear in Couette flow, the degree of inhibition increasing with increasing shear stress. In contrast, mAb 10E5, blocking the vWF binding domain on GPIIb-IIIa, essentially blocked all aggregation at the shear rates tested. We conclude that vWF, expressed on ADP-activated platelets, is at least the predominant cross-bridging molecule mediating aggregation at moderate shear stress. There is an absolute requirement for free activated GPIIb-IIIa receptors, postulated to interact with platelet-secreted, surface bound vWF. The GPIb-vWF cross-bridging reaction plays a facilitative role becoming increasingly important with increasing shear stress. Since aurin tricarboxylic acid, which blocks the GPIb binding domain on vWF, was also found to completely block aggregation in Poiseuille flow, we conclude that it too affects the GPIIb-IIIa interaction.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4025-4025
Author(s):  
Miguel A. Cruz ◽  
Katie E. Sowa ◽  
Scott M. Smith

Abstract Abstract 4025 Poster Board III-961 Recently, we described that the gain of function mutation R1450E in the A1 domain of von Willebrand factor (VWF) eliminates the formation of catch bond with glycoprotein (GP)Ibα, prolonging the bond lifetimes at low forces. Because those studies were performed with the mutant immobilized on a plastic surface, we further characterize the effect of this mutant on platelet function in solution and under shear stress. Both wild type (WT) and mutant A1A2A3 proteins were expressed in HEK293 cells and purified to homogeneity. The monomeric state of A1A2A3 proteins were assessed by gel filtration chromatography and neither of the proteins had formed dimers or any higher order aggregates. The recombinant A1A2A3 mutant bound spontaneously to GPIbα without the modulator ristocetin with a half-maximal binding observed at 65 ± 8 nM. This apparent dissociation constant was comparable to that of WT (50 ± 10 nM) in the presence of ristocetin. The mutant failed to induce spontaneous platelet aggregation under stirring conditions, and blocked 100% ristocetin-induced platelet agglutination (RIPA) at concentration of 250 nM. At the same concentration, the mutant increased shear-induced platelet aggregation (SIPA) at 500s-1 and 5000s-1 shear rates, reaching 42% and 66%, respectively, while SIPA did not exceed 18% in the presence of WT. The anti-αIIbβ3 antibody 7E3 blocked the effect of the mutant on SIPA. Blood was then incubated with the mutant (250 nM) and perfused over a surface coated with fibrin(ogen) at different shear rates. Blood containing WT resulted in <10% surface coverage by platelets after 1.5 minutes while platelets from blood containing the mutant rapidly bound covering 100% of the fibrin(ogen) surface area at 1500s-1. At shear rate of 2500s-1, surface coverage was 20% for the mutant and 0% for WT fragment. EDTA and antibodies 6D1 (GPIbα) and 10E5 (αIIbβ3) effectively blocked mutant-mediated platelet adhesion and thrombus formation under high shear rates. The addition of ristocetin (0.5 mg/ml) to whole blood prior perfusion reproduced the effect of the mutant. Here, we describe an A1A2A3 mutant that bound spontaneously to GPIbα but affected differently RIPA and SIPA. These results suggest that hydrodynamic forces directly act on the GPIbα-mutant A1A2A3 complex, regulating signaling. In addition, platelet activation induced by the binding of soluble mutant A1A2A3 or plasma VWF results in αIIbβ3-mediated platelet adhesion to fibrin(ogen) under high shear rates. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2104-2104
Author(s):  
Armin J. Reininger ◽  
Marina Napoleone ◽  
Jennifer Angerer ◽  
Babak Falah ◽  
Reinhard Schneppenheim ◽  
...  

Abstract Abstract 2104 Thrombus growth rate has been reported to be a linear function of very high shear rates beyond 40,000 s-1 (Ku DN, Bioreology. 2007;44(4):273-84), which are thought to occur in severe arterial stenosis. We therefore applied shear rates continuously increasing from 2,000 s-1 to 40,000 s-1 and examined platelet and von Willebrand factor (VWF) interaction in a parallel plate flow chamber under direct visualization. Above a critical threshold of 10,000 to 15,000 s-1 aggregates of inactivated platelets formed when VWF was present in solution and immobilized on the perfused surface (Ruggeri, … Reininger; Blood, 108: 1903–1910, 2006). A new finding was the shear dependent simultaneous formation of VWF strands in and around those platelet aggregates, growing to strands up to several microns thick and up to several tens of microns long, thus forming large VWF networks. Platelets appeared to be enmeshed in the VWF networks but were nevertheless a prerequsite for their formation, mutually fostering each other. Platelet-VWF conglomerates formed at the perfused VWF surface, were constantly rolling in the flow direction, grew in size with increasing shear rate, and were completely reversible below the critical shear rate threshold of 10,000 s-1. VWF networks assembled in whole blood as well as in washed blood cell suspensions reconstituted with VWF. Recombinant full length VWF generated larger VWF networks than a commercial VWF preparation from pooled human plasma. Perfusion of collagen coated surfaces caused assembly of VWF networks anchored to the collagen fibrils and capture of activation-blocked platelets within them at shear rates of 2,000 s-1, leading to residence times of platelet-VWF conglomerates of more than a minute. Newly formed platelet conglomerates could be visualized rolling on the surfaces of already attached conglomerates. When we used a gain of function mutation of VWF, rolling platelet aggregates could be detected at a shear rate as low as 1,500 s-1. We conclude that shear rate activation of VWF leads to reversible platelet-VWF network generation, which may be a crucial mechanism of fast platelet accrual and prolonged arrest times at sites of thrombosis as well as physiological hemostasis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 414-414
Author(s):  
Armin J. Reininger ◽  
Harry F.G. Heijnen ◽  
Hannah Schumann ◽  
Wolfgang Schramm ◽  
Zaverio M. Ruggeri

Abstract We describe here novel findings of the mechanism of initial platelet contact with immobilized von Willebrand factor (VWF) under high shear stress and how this leads to the formation of procoagulant platelet derived microparticles. In a parallel plate perfusion chamber whole blood was perfused over multimeric VWF or dimeric VWF A1 domain at shear rates between 2,000 s−1 and 40,000 s−1. Platelet attachment to VWF always occurred through glycoprotein Ibα receptors located in discrete adhesion points (DAPs), i.e. few limited membrane areas of 0.05 to 0.1 μm2 that arrested the platelets on the surface. The ongoing flow translocated such anchored platelets downstream, thus pulling membrane tethers from the intact and unstimulated platelet. Tethers could remain connected with the platelet body or be eventually severed, which occurred preferentially at shear rates above 6,000 s−1. Depending on the length of the severed membrane fragment they represented either isolated tethers or microparticles (arrowheads; see Figure below), the latter defined by a diameter of 50 to 100 nanometers. The shear rate threshold for microparticle formation was between 6,000 s−1 and 10,000 s−1. Immuno-fluorescence and immuno-electron microscopy showed glycoprotein Ibα clustered in DAPs of microparticles and tethers, i.e. the contact sites with the surface immobilized VWF. The microparticles also exhibited tissue factors on their surface and showed significant procoagulant activity measured by thrombin generation. We propose that after GPIbα anchoring to VWF in flowing blood passive mechanical pulling of membrane from platelets may generate platelet derived microparticles that can potentially support thrombogenesis. Figure Figure


1988 ◽  
Vol 60 (01) ◽  
pp. 030-034 ◽  
Author(s):  
Eva Bastida ◽  
Juan Monteagudo ◽  
Antonio Ordinas ◽  
Luigi De Marco ◽  
Ricardo Castillo

SummaryNative von Willebrand factor (N-vWF) binds to platelets activated by thrombin, ADP or ristocetin. Asialo vWF (As-vWF) induces platelet aggregation in absence of platelet activators. N-vWF mediates platelet adhesion to vessel subendothelium at high shear rates. We have investigated the role of As-vWF in supporting platelet deposition to rabbit vessel subendothelium at a shear rate of 2,000 sec-1, using the Baumgartner perfusion system. We have studied the effects of the addition of As-vWF (from 2 to 12 μg/ml) to perfusates consisting of washed red blood cells, 4% human albumin and washed platelets. Our results show a significant increase in platelet deposition on subendothelium (p <0.01) in perfusions to which As-vWF had been added. Blockage of the platelet glycoproteins Ib and IIb/IIIa (GPIb and GPIIb/IIIa) by specific monoclonal antibodies (LJIb1 and LJCP8, respectively) resulted in a decrease of platelet deposition in both types of perfusates prepared with N-vWF and As-vWF. Our results indicate that As-vWF enhances platelet deposition to vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is mediated by the binding of As-vWF to platelet membrane receptors, which in turn, promote platelet spreading and adhesion to the subendothelium.


1992 ◽  
Vol 67 (04) ◽  
pp. 453-457 ◽  
Author(s):  
Raelene L Kinlough-Rathbone ◽  
Marian A Packham ◽  
Dennis W Perry ◽  
J Fraser Mustard ◽  
Marco Cattaneo

SummaryThe stability of platelet aggregates is influenced by the extent of the release of granule contents; if release is extensive and aggregation is prolonged, deaggregation is difficult to achieve. The relative importance of the contributions of released substances to aggregate stability are not known, although stable thrombin-induced aggregates form in platelet-rich plasma from patients with barely detectable plasma or platelet fibrinogen, and ADP stabilizes thrombin-induced aggregates of platelets from patients with delta storage pool deficiency which otherwise deaggregate more readily than normal platelets. We degranulated platelets with thrombin (0.9 U/ml caused greater than 90% loss of delta and alpha granule contents) and recovered them as individual platelets in fresh medium. The degranulated platelets were reaggregated by thrombin (2 U/ml). To prevent continuing effects of thrombin, FPRCH2C1 was added when thrombin-induced aggregation of thrombin-degranulated platelets reached its maximum. EDTA (5 mM) or EGTA (5 mM) added at maximum aggregation did not deaggregate these platelets, indicating that the stability of these aggregates does not depend on Ca2+ in the medium. Whereas with control platelets a combination of PGE1 (10 μM) and chymotrypsin(10 U/ml) was required for deaggregation, with thrombin-degranulated platelets either PGE1 or chymo-trypsin alone caused extensive deaggregation. The rate and extent of deaggregation of thrombin-degranulated platelets by a combination of PGE1 and chymotrypsin was greater than with control platelets.Electron microscope gold immunocytochemistry using antihuman fibrinogen IgG, anti-von Willebrand factor and anti-fibronectin showed a) that fibrinogen in the vacuoles of degranulated platelets was visible at focal points of platelet contact in the aggregates, but that large areas of platelet contact had no fibrinogen detectable between them; and b) in comparison to fibrinogen, little fibronectin or von Willebrand factor (vWf) was detectable in the platelets.Since the linkages between thrombin-degranulated platelets reaggregated by thrombin can be disrupted either by raising cAMP (thus making glycoprotein IIb/IIIa unavailable) or by proteolysis, these linkages are less stable than those formed between normal platelets. It might therefore be expected that platelets that take part in thrombus formation and then recirculate are likely to form less stable thrombi than platelets that have not released their granule contents.


Sign in / Sign up

Export Citation Format

Share Document