scholarly journals Gain-of-function variant p.Pro2555Arg of von Willebrand factor increases aggregate size through altering stem dynamics

Author(s):  
Volker Huck ◽  
Po-chia Chen ◽  
Emma-Ruoqi Xu ◽  
Alexander Tischer ◽  
Ulrike Klemm ◽  
...  

The multimeric plasma glycoprotein von Willebrand factor (VWF) is best known for recruiting platelets to sites of injury during primary hemostasis. Generally, mutations in the VWF gene lead to loss of hemostatic activity and thus the bleeding disorder von Willebrand Disease. By employing cone and platelet aggregometry and microfluidic assays, we uncovered a platelet glycoprotein (GP)IIb/IIIa-dependent prothrombotic gain-of-function (GOF) for variant p.Pro2555Arg, located in the C4-domain, leading to an increase in platelet aggregate size. We performed complementary biophysical and structural investigations using circular dichroism spectra, small angle X-ray scattering, NMR spectroscopy, molecular dynamics simulations on the single C4-domain and dimeric wildtype and p.Pro2555Arg constructs. C4-p.Pro2555Arg retained the overall structural conformation with minor populations of alternative conformations exhibiting increased hinge flexibility and slow conformational exchange. The dimeric protein becomes disordered and more flexible. Our data suggest that the GOF is not affecting the binding affinity of the C4-domain for GPIIb/IIIa. Instead, the increased VWF dimer flexibility enhances temporal accessibility of platelet binding sites. Using an interdisciplinary approach, we revealed that p.Pro2555Arg is the first VWF variant, which increases platelet aggregate size and show a shear-dependent function of the VWF stem region, which can become hyperactive through mutations. Prothrombotic GOF variants of VWF are a novel concept of a VWF-associated pathomechanism of thromboembolic events, which is of general interest to vascular health but which is not yet considered in diagnostics. Thus, awareness should be raised for the risk they pose. Furthermore, our data implicate the C4-domain as a novel anti-thrombotic drug target.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1238-1238
Author(s):  
Paquita Nurden ◽  
Alan T Nurden ◽  
Jean-Max Pasquet ◽  
Jocelyne Enouf ◽  
Cécile Faurie-Bonnafous ◽  
...  

Abstract The interaction between von Willebrand factor (VWF) and platelets plays a key role in hemostasis. VWF gene abnormalities result in the most common inherited bleeding disorder, von Willebrand disease (VWD). VWD2B, characterized by gain-of-function binding of VWF to platelet glycoprotein (GP)Ib, is due to mutations located within a portion of exon 28 of the VWF gene, coding for the VWFA1 domain. We have previously shown in a family with a R1308P mutation that the enhanced interaction between VWF and GPIb can also occur in the bone marrow leading to a premature release of platelets from megakaryocytes (MKs) with circulating large platelets and agglutinates (Nurden et al, Blood 2006). We have now widened our study to see if these changes are common in VWD2B. As a control, we also included platelets from patients lacking VWF. In total, we have analyzed the platelets from 9 VWD2B patients with the following mutations: P1266L, R1306W, R1308C, I1309V, V1316M, R1341Q, R1341W; platelets from 2 VWD3 patients with a large deletion of the VWF gene were also included. We have used electron microscopy (EM) and immunofluorescence (IF) to evaluate platelet morphological characteristics; included in the morphometric studies was the measure of platelet size. We have also analyzed platelet VWF content and performed plasma/platelet VWF multimeric analyses. PMCA4B belonging to the SERCA proteins (a substrate of caspase) and GRP78 a stress protein were evaluated as markers of abnormal megakaryocytopoiesis. At the time of blood withdrawal, 4 patients were thrombocytopenic; nevertheless, for all patients with VWD2B a pool of giant platelets was found. Agglutinates were often but not always present. Globally, the percentage of platelets with the longest diameter (LD) > than 3μm was 58 ±16% (controls 24 ± 13%) and the shortest diameter (SD) > 2μm was 33% ± 13 (controls 4 ± 0.6%). Thus platelets were enlarged without being round. The largest platelets were found for the patient with the V1316M mutation. The content of alpha granules appeared normal, as was the quantity of internal membrane pools. To our surprise, giant platelets were also present for the two VWD3 patients; 66 and 57% of the platelets have a LD > 3μm and 21 and 19% a SD > than 2μm. The EM evaluation for both type 3 patients suggested that some giant platelets resembled large fragments prematurely detached from MKs. Examining further by IF and EM coupled with immunogold labelling with a mixture of anti-GPIIb-IIIa and GPIb-IX MoAbs revealed occasional circulating MKs. Nuclei surrounded by cytoplasmic remnants were also seen. Analysis of PMCA4B and GRP 78, showed that their levels were increased for VWD2B patients with the R1341Q mutation but borderline for the patient with the R1308C mutation (contrasting with increased levels for R1308P) showing that premature apoptosis was not a constant feature. These results were normal for the VWD3 patients. Our results confirm that megakaryocytopoiesis can be affected by both an abnormal gain-of-function (VWD2B) and completely deficient (VWD3) VWF. However, the consequences of up-regulated VWF and VWF deficiency may be different.


1990 ◽  
Vol 64 (02) ◽  
pp. 326-332 ◽  
Author(s):  
J P Girma ◽  
Y Takahashi ◽  
A Yoshioka ◽  
J Diaz ◽  
D Meyer

SummaryWe have evidence that ristocetin and botrocetin mediate binding of von Willebrand Factor (vWF) to platelet glycoprotein lb (GPIb) through two distinct domains on the vWF molecule. This was established by using monoclonal antibodies (MAbs) to vWF and synthetic peptides derived from the sequence of vWF. MAb 322 and MAb NMC/vW 4 both recognize native vWF as well as fragments containing the GPIb-binding domain of vWF, obtained with the following enzymes: trypsin (116 kDa), V-8 pro tease (Spill, 320 kDa) and V-8 protease plus subtilisin (33-28 kDa). Nevertheless, the lack of reciprocal displacement between the two MAbs in experiments of competitive inhibition for binding to vWF demonstrate that their respective epitopes are separate. Both MAbs inhibit 125I-vWF binding to platelet membrane GPIb and vWF-dependent platelet agglutination induced by ristocetin. However, only MAb NMC/vW4 inhibits these functions in the presence of botrocetin and when ristocetin-induced platelet agglutination is inhibited by MAb 322, botrocetin is still able to restore the agglutination. The involvement of two distinct domains of vWF for binding to GPIb in the presence of ristocetin or botrocetin was confirmed in experiments of binding of 125I-vWF to platelets using as competitor synthetic peptides corresponding to the GPIb binding domain of vWF (Cys 474 to Pro 488 and Ser 692 to Pro 708). At a final concentration of 2.5 mM both peptides inhibit more than 90% of the binding of vWF to ristocetin-treated platelets but are unable to modify this binding in the presence of botrocetin. In conclusion our data suggest that botrocetin and ristocetin involve distinct sites on vWF for binding to GPIb.


1992 ◽  
Vol 68 (04) ◽  
pp. 464-469 ◽  
Author(s):  
Y Fujimura ◽  
S Miyata ◽  
S Nishida ◽  
S Miura ◽  
M Kaneda ◽  
...  

SummaryWe have recently shown the existence of two distinct forms of botrocetin (one-chain and two-chain), and demonstrated that the two-chain species is approximately 30 times more active than the one-chain in promoting von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib. The N-terminal sequence of two-chain botrocetin is highly homologous to sea-urchin Echinoidin and other Ca2+-dependent lectins (Fujimura et al., Biochemistry 1991; 30: 1957–64).Present data indicate that purified two-chain botrocetin binds to vWF from plasmas of patients with type IIA or IIB von Willebrand disease and its interaction is indistinguishable from that with vWF from normal individuals. However, an “activated complex” formed between botrocetin and IIB vWF expresses an enhanced biological activity for binding to GP Ib whereas the complex with IIA vWF has a decreased binding activity. Among several anti-vWF monoclonal antibodies (MoAbs) which inhibit ristocetin-induced platelet aggregation and/or vWF binding to GPIb, only two MoAbs (NMC-4 and RFF-VIII RAG:1) abolished direct binding between purified botrocetin and vWF. This suggests that they recognize an epitope(s) on the vWF molecule in close proximity to the botrocetin binding site.


1996 ◽  
Vol 75 (04) ◽  
pp. 655-660 ◽  
Author(s):  
Mario Mazzucato ◽  
Luigi De Marco ◽  
Paola Pradella ◽  
Adriana Masotti ◽  
Francesco I Pareti

SummaryPorcine von Willebrand factor (P-vWF) binds to human platelet glycoprotein (GP) lb and, upon stirring (1500 rpm/min) at 37° C, induces, in a dose-dependent manner, a transmembrane flux of Ca2+ ions and platelet aggregation with an increase in their intracellular concentration. The inhibition of P-vWF binding to GP lb, obtained with anti GP lb monoclonal antibody (LJ-Ib1), inhibits the increase of intracellular Ca2+ concentration ([Ca2+]i) and platelet aggregation. This effect is not observed with LJ-Ib10, an anti GP lb monoclonal antibody which does not inhibit the vWF binding to GP lb. An anti GP Ilb-IIIa monoclonal antibody (LJ-CP8) shown to inhibit the binding of both vWF and fibrinogen to the GP IIb-IIIa complex, had only a slight effect on the [Ca2+]i rise elicited by the addition of P-vWF. No inhibition was also observed with a different anti GP IIb-IIIa monoclonal antibody (LJ-P5), shown to block the binding of vWF and not that of fibrinogen to the GP IIb-IIIa complex. PGE1, apyrase and indomethacin show a minimal effect on [Ca2+]i rise, while EGTA completely blocks it. The GP lb occupancy by recombinant vWF fragment rvWF445-733 completely inhibits the increase of [Ca2+]i and large aggregates formation. Our results suggest that, in analogy to what is seen with human vWF under high shear stress, the binding of P-vWF to platelet GP lb, at low shear stress and through the formation of aggregates of an appropriate size, induces a transmembrane flux of Ca2+, independently from platelet cyclooxy-genase metabolism, perhaps through a receptor dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of the GP IIb-IIIa complex.


1995 ◽  
Vol 73 (02) ◽  
pp. 309-317 ◽  
Author(s):  
Dorothy A Beacham ◽  
Miguel A Cruz ◽  
Robert I Handin

SummaryIntroduction of single amino acid substitutions into the C-terminal Arg-Gly-Asp-Ser (RGDS) site of von Willebrand Factor, referred to as RGD mutant vWF, selectively abrogated vWF binding to platelet glycoprotein IIb/IIIa (GpIIb/IIIa, αIIbβ3 and abolished human umbilical vein endothelial cell (HUVEC) spreading, but not attachment, to RGD mutant vWF (Beacham, D. A., Wise, R. J., Turci, S. M. and Handin, R. I. 1992. J. Biol. Chem. 167, 3409-3415). These results suggested that in addition to the vitronectin receptor (VNR, αvβ3), a second endothelial membrane glycoprotein can mediate HUVEC adhesion to vWF. HUVEC attachment to wild-type (WT) and RGD-mutant vWF was reduced by two proteins known to block the vWF-platelet glycoprotein Ib/IX (GpIb/IX) interaction, the monoclonal antibody AS-7 and the recombinant polypeptide, vWF-A1. The addition of cytochalasin B or DNase I to disrupt potential GPIbα-cytoskeletal interactions enhanced the immunoprecipitation of endothelial GPIbα, caused HUVEC to round up, and increased HUVEC adhesion to RGD mutant vWF. These results indicate that while the VNR is the primary adhesion receptor for vWF, endothelial GPIbα can mediate HUVEC attachment to vWF. GpIb-dependent attachment could contribute to HUVEC adhesion under conditions when cell surface expression of the VNR is downregulated, and VNR-dependent adhesion is reduced.


1992 ◽  
Vol 284 (3) ◽  
pp. 711-715 ◽  
Author(s):  
G Piétu ◽  
A S Ribba ◽  
G Chérel ◽  
D Meyer

In order to study the structure-function relationship of von Willebrand Factor (vWF), we have located the epitope of a well-characterized monoclonal antibody (MAb) to vWF (MAb 9). This MAb reacts with the C-terminal portion of the vWF subunit, SPII fragment [amino acids (aa) 1366-2050], which includes an Arg-Gly-Asp (RGD) sequence at positions 1744-1746, and totally inhibits vWF and SPII binding to platelet membrane glycoprotein IIb/IIIa (GPIIb/IIIa). A recombinant DNA library was constructed by cloning small (250-500 nucleotides) vWF cDNA fragments into the lambda gt11 vector and these inserts were expressed as fusion proteins with beta-galactosidase. Immunological screening of the library with 125I-MAb 9 identified three immunoreactive clones. vWF inserts were amplified by the PCR and their sequences demonstrated overlapping nucleotides from positions 7630 to 7855 of vWF cDNA, coding for aa residues 1698-1773 of the mature subunit, indicating that this is the epitope of MAb 9. vWF-beta-galactosidase fusion protein reacted with 125I-MAb 9 by Western blotting. In a solid-phase radioimmunoassay, the purified fusion proteins decreased the binding of vWF to 125I-MAb 9 by 50%, and this inhibition was dose-dependent between 3.5 and 120 nM. Therefore the epitope of MAb 9 is located within aa 1698-1773 of the vWF subunit, which includes the RGD sequence implicated in the binding of adhesive proteins of GPIIb/IIIa.


2018 ◽  
Vol 2 (19) ◽  
pp. 2522-2532 ◽  
Author(s):  
Sachiko Kanaji ◽  
Jennifer N. Orje ◽  
Taisuke Kanaji ◽  
Yuichi Kamikubo ◽  
Yosuke Morodomi ◽  
...  

Abstract The interaction of platelet glycoprotein Ibα (GPIbα) with von Willebrand factor (VWF) initiates hemostasis after vascular injury and also contributes to pathological thrombosis. GPIbα binding to the VWF A1 domain (VWFA1) is a target for antithrombotic intervention, but attempts to develop pharmacologic inhibitors have been hindered by the lack of animal models because of the species specificity of the interaction. To address this problem, we generated a knockin mouse with Vwf exon 28–encoding domains A1 and A2 replaced by the human homolog (VWFh28). VWFh28 mice (M1HA) were crossbred with a transgenic mouse strain expressing human GPIbα on platelets (mGPIbαnull;hGPIbαTg; H1MA) to generate a new strain (H1HA) with humanized GPIbα-VWFA1 binding. Plasma VWF levels in the latter 3 strains were similar to those of wild-type mice (M1MA). Compared with the strains that had homospecific GPIbα-VWF pairing (M1MA and H1HA), M1HA mice of those with heterospecific pairing had a markedly greater prolongation of tail bleeding time and attenuation of thrombogenesis after injury to the carotid artery than H1MA mice. Measurements of GPIbα-VWFA1 binding affinity by surface plasmon resonance agreed with the extent of observed functional defects. Ristocetin-induced platelet aggregation was similar in H1HA mouse and human platelet-rich plasma, and it was comparably inhibited by monoclonal antibody NMC-4, which is known to block human GPIbα-VWFA1 binding, which also inhibited FeCl3-induced mouse carotid artery thrombosis. Thus, the H1HA mouse strain is a fully humanized model of platelet GPIbα-VWFA1 binding that provides mechanistic and pharmacologic information relevant to human hemostatic and thrombotic disorders.


Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3792-3799 ◽  
Author(s):  
Hilde Depraetere ◽  
Nadine Ajzenberg ◽  
Jean-Pierre Girma ◽  
Catherine Lacombe ◽  
Dominique Meyer ◽  
...  

Shear-induced platelet aggregation (SIPA) involves von Willebrand Factor (vWF) binding to platelet glycoprotein (GP)Ib at high shear stress, followed by the activation of αIIbβ3. The purpose of this study was to determine the vWF sequences involved in SIPA by using monoclonal antibodies (MoAbs) to vWF known to interfere with its binding to GPIb and to αIIbβ3. Washed platelets were exposed to shear rates between 100 and 4,000 seconds−1 in a rotational viscometer. SIPA was quantitated by flow cytometry as the disappearance of single platelets (DSP) in the sheared sample in the presence of vWF, relative to a control in the absence of shear and vWF. At a shear rate of 4,000 seconds−1, DSP was increased from 5.9% ± 3.5% in the absence of vWF to 32.7% ± 6.3% in the presence of vWF. This increase in SIPA was not associated with an elevation of P-selectin expression. vWF-dependent SIPA was completely abolished by MoAb 6D1 to GPIb and partially inhibited by MoAb 10E5 to αIIbβ3. Three MoAbs to vWF were compared for their effect on SIPA at 4,000 seconds−1 in the presence of vWF: MoAb 328, known to block vWF binding to GPIb in the presence of ristocetin, MoAb 724 blocking vWF binding to GPIb in the presence of botrocetin, and MoAb 9, an inhibitor of vWF binding to αIIbβ3. Similar to the effect of MoAb 6D1, MoAb 328 completely inhibited the effect of vWF, whereas MoAb 9 had a partial inhibitory effect, as MoAb 10E5 did. In contrast, MoAb 724, as well as its F(ab′)2 fragments, promoted shear-dependent platelet aggregation (165% of the DSP value obtained in the absence of MoAb 724), indicating that MoAb 724 was responsible for an enhanced aggregation, which was independent of binding to the platelet Fcγ receptor. In addition, the enhancement of aggregation induced by MoAb 724 was abrogated by MoAb 6D1 or 10E5 to the level of SIPA obtained in the presence of vWF incubated with a control MoAb to vWF. Finally, the activating effect of MoAb 724 was also found under static conditions at ristocetin concentrations too low to induce platelet aggregation. Our results suggested that on binding to a botrocetin-binding site on vWF, MoAb 724 mimics the effect of botrocetin by inducing an active conformation of vWF that is more sensitive to shear stress or to low ristocetin concentration.


Sign in / Sign up

Export Citation Format

Share Document