CXCR4 Antagonists Mobilize Acute Lymphoblastic Leukemia Cells into the Peripheral Blood and Inhibit Engraftment in Mice.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4592-4592
Author(s):  
Julius Juarez ◽  
John Hewson ◽  
Adam Cisterne ◽  
Rana Baraz ◽  
Kenneth F. Bradstock ◽  
...  

Abstract The role of CXCL12 in the growth of B cell progenitor acute lymphoblastic leukemia (ALL) and the homing of these cells to the bone marrow has been well established. However the effect of modulating CXCL12/CXCR4 interactions on the growth of ALL cells in vivo has not been examined. In this study we used specific peptide and small molecule antagonists of CXCR4 to examine the importance of CXCL12/CXCR4 interactions in the development of leukemia in an in-vivo murine model of ALL. CXCR4 antagonists induced mobilization of human and murine B cell progenitor ALL cells into the peripheral blood, with a 3.8±1.9 and 6.5±3.3 fold increase in leukemic cells/ml one hour after administration of the antagonist respectively, similar to that observed for normal progenitors. Daily administration of AMD3100 commencing the day following the injection of cells and continuing for 21 days resulted in a mean reduction in peripheral blood white cell count of 50±12% and the leukemic cell count of 63±4%. There was also a significant reduction in both the total cells in the spleen of 58±1% and the leukemic cell number in this organ of 75±11%. A significant reduction in leukemic cell numbers in the bone marrow was observed in one (44% reduction) case. There was reduced infiltration of other organs including kidney, liver and skeletal muscle. This study demonstrates that disrupting the CXCL12/CXCR4 axis in B cell progenitor ALL reduces the tumor burden. Whether this is due to direct inhibitory effects on proliferation and survival, or results from disruption of the leukemic cell interactions within the bone marrow remains to be determined.

2021 ◽  
Vol 22 (9) ◽  
pp. 4426
Author(s):  
Erica Dander ◽  
Chiara Palmi ◽  
Giovanna D’Amico ◽  
Giovanni Cazzaniga

Genetic lesions predisposing to pediatric B-cell acute lymphoblastic leukemia (B-ALL) arise in utero, generating a clinically silent pre-leukemic phase. We here reviewed the role of the surrounding bone marrow (BM) microenvironment in the persistence and transformation of pre-leukemic clones into fully leukemic cells. In this context, inflammation has been highlighted as a crucial microenvironmental stimulus able to promote genetic instability, leading to the disease manifestation. Moreover, we focused on the cross-talk between the bulk of leukemic cells with the surrounding microenvironment, which creates a “corrupted” BM malignant niche, unfavorable for healthy hematopoietic precursors. In detail, several cell subsets, including stromal, endothelial cells, osteoblasts and immune cells, composing the peculiar leukemic niche, can actively interact with B-ALL blasts. Through deregulated molecular pathways they are able to influence leukemia development, survival, chemoresistance, migratory and invasive properties. The concept that the pre-leukemic and leukemic cell survival and evolution are strictly dependent both on genetic lesions and on the external signals coming from the microenvironment paves the way to a new idea of dual targeting therapeutic strategy.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2973-2981 ◽  
Author(s):  
S Kamel-Reid ◽  
M Letarte ◽  
M Doedens ◽  
A Greaves ◽  
B Murdoch ◽  
...  

Bone marrow samples from patients with pre-B acute lymphoblastic leukemia (pre-B ALL), either at diagnosis or at relapse, were transplanted into scid mice to determine whether these freshly obtained leukemic cells could proliferate in vivo and whether there were any differences in their in vivo growth characteristics. Cells from three patients who relapsed within 13 months of diagnosis proliferated rapidly in the murine bone marrow, spleen, and thymus, invaded peripheral organs, and resulted in morbidity and mortality of the animals within 4 to 16 weeks. Cells from two patients who relapsed 3.5 years after diagnosis grew much slower than the early relapse samples, taking up to 30 weeks to infiltrate the bone marrow of recipient mice. In contrast, leukemic cells were absent or were detected at low numbers in scid mice transplanted with cells obtained at diagnosis from three patients who have not yet relapsed. These results show an increased ability of leukemic cells from patients with aggressive lymphoblastic leukemia of poor prognosis to proliferate in scid mice.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 844-844
Author(s):  
Yiguo Hu ◽  
Linghong Kong ◽  
Kevin Staples ◽  
Kevin Mills ◽  
John G. Monroe ◽  
...  

Abstract The BCR-ABL oncogene induces human Philadelphia-positive (Ph+) B-cell acute lymphoblastic leukemia (B-ALL) and chronic myeloid leukemia (CML) that advances to acute phase of CML called blast crisis. In this acute phase, CML patients can develop either B-ALL or acute myeloid leukemia. In B-ALL, differentiation of leukemic cells are blocked at pro-/pre-B stage, and the underlying mechanism is unknown. We hypothesize that this blockade of B-cell differentiation may be important for the development of B-ALL induced by BCR-ABL, and if so, promotion of B-leukemic cell differentiation would create a novel therapeutic strategy for B-ALL. To test this hypothesis, we first compared the percentages of IgM+ B-leukemic cells in BALB/c and C57BL/6 (B6) mice with BCR-ABL-induced B-ALL, because we have previously found that B-ALL develops more quickly in BALB/c mice than in B6 mice (Li et al, J. Exp. Med.189:1399–1412, 1999). We expressed BCR-ABL in bone marrow (BM) using retroviral transduction and transplantation in these two different strains of inbred mice to induce B-ALL. There were significantly more peripheral blood B220+ B cells in BALB/c B-ALL mice than those in B6 mice, correlating to faster B-ALL in BALB/c mice than in B6 mice. Among these B220+ cells, IgM+ cells were much less in BALB/c mice than in B6 mice. We also compared rearrangement of the B cell antigen receptor (BCR) heavy chains (m chains) between BALB/c and B6 backgrounds using BCR-ABL-expressing pro-B cell lines isolated from the B-ALL mice. Normal m chains rearrangement was found in B6 leukemic cells, but not in BALB/c leukemic cells. These results indicate that more differentiated B-leukemic cells are associated with less aggressive disease. To further demonstrate the role of blockade of B-cell differentiation in B-ALL development, we induced B-leukemic cell differentiation by co-expression of BCR-ABL and intact immunoregulatory tyrosine activation motifs (ITAM) contained in immunoglobulin (Ig)_/Igß complexes in BM cells of B-ALL mice, comparing to expression of BCR-ABL alone. We treated these mice with imatinib (orally, 100 mg/kg, twice a day). The treated mice with B-ALL induced by co-expression of BCR-ABL and ITAM lived three-week longer than those with B-ALL induced by BCR-ABL only, with some mice in long-term remission. Prolonged survival was associated with 50% increased B220+/IgM+ B-leukemic cells in peripheral blood of the mice. Taken together, our results demonstrate that blockade of B-cell differentiation is critical for the development of B-ALL induced by BCR-ABL, and provide a rationale for combination therapy of B-ALL with imatinib and induction of leukemic cell differentiation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1505-1505
Author(s):  
Wing H. Tong ◽  
Rob Pieters ◽  
Wim C.J. Hop ◽  
Claudia Lanvers-Kaminsky ◽  
Joachim Boos ◽  
...  

Abstract Abstract 1505 Asparaginase is an essential component of combination chemotherapy of acute lymphoblastic leukemia (ALL). Asparaginase breaks down asparagine into aspartic acid and ammonia. Because asparagine is necessary for protein synthesis, its depletion leads to cell death. Recently, it has been suggested that mesenchymal cells in the bone marrow may produce asparagine and form ‘protective niches’ for leukemic cells. In vitro, this led to high levels of asparagine and asparaginase resistance of the ALL cells (Iwamoto et al. (J Clin Invest. 2007)). However, it is unknown if this holds true for the clinical in vivo situation. The aim of our study is to analyse whether mesenchymal cells or other cells in the bone marrow indeed produce significant amounts of asparagine in vivo that may lead to clinical asparaginase resistance. Ten de novo ALL patients were enrolled in this study. All children received induction chemotherapy according to protocol 1-A and 1-B of the Dutch Childhood Oncology Group (DCOG) ALL-10 protocol. Asparaginase levels and amino acid levels (asparagine, aspartic acid, glutamine and glutamic acid) were measured in bone marrow (BM) and peripheral blood at diagnosis (day 1), days 15, 33 and 79. On days that asparaginase was administered (days 15 and 33) it was ensured that study material was obtained before the E-coli L-asparaginase infusions. Changes over time of asparaginase trough levels in BM and peripheral blood were evaluated using Mixed models ANOVA. The amino acids levels in 0.5 ml BM, 3 ml BM and peripheral blood at days 15 and 33 were also compared using Mixed models ANOVA. All these analyses were done after log transformation of measured values to get approximate normal distributions. A two-sided p-value < 0.05 was considered statistically significant. The asparaginase levels were all below detection limit (< 5 IU/L) in BM and peripheral blood at days 1 and 79. In both compartments, the median asparaginase trough levels were not significantly different at days 15 and 33. At diagnosis, no significant difference in asparagine level between 3 ml BM and peripheral blood was found (median: 44.5 μM (range 20.6–59.6 μM) and 43.9 μM (range 18.4 –58.5 μM), respectively). However, the median level of aspartic acid at diagnosis in 3 ml BM (19.2 μM; range 6.2–52.6 μM) was significantly higher as compared to median level of peripheral blood (5.7 μM; range 2.4–10.1 μM) (p=0.002). The aspartic acid levels were also higher in BM compared to peripheral blood at days 15 and 33 (both p=0.001) and at day 79 (p=0.002). Aspartic acid levels were significantly higher in 0.5 ml versus 3 ml BM (p=0.001) and this difference was also found when comparing 0.5 ml BM versus peripheral blood (p<0.001) suggesting dilution with peripheral blood when taking higher volumes of ‘bone marrow’. Asparagine levels were all below the lower limit of quantification (LLQ < 0.2 μM) in both BM and blood during asparaginase treatment at days 15 and 33. At day 79, no significant difference in asparagine levels between BM (37.7 μM; range 33.4–50.3 μM) and peripheral blood (38.9 μM; range 25.7 –51.3 μM) was seen. During the time course of asparaginase infusions, the glutamine and glutamic acid levels did not change significantly. In conclusion, we demonstrate higher aspartic acid levels in bone marrow compared to peripheral blood. The higher aspartic acid levels are detected at diagnosis, during asparaginase therapy at days 15 and 33, and also at day 79 at complete remission, showing that these do not originate from leukemic cells nor from asparagine breakdown by asparaginase but from cells in the microenvironment of the bone marrow. However, there is no increased asparagine synthesis in vivo in the bone marrow of ALL patients. Therefore, increased asparagine synthesis by mesenchymal cells may be of relevance for resistance to asparaginase of leukemic cells in vitro but not in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1781-1788
Author(s):  
E Privitera ◽  
MP Kamps ◽  
Y Hayashi ◽  
T Inaba ◽  
LH Shapiro ◽  
...  

The prognostically important 1;19 chromosomal translocation can alter the E2A gene on chromosome 19p13 in childhood B-cell precursor acute lymphoblastic leukemia (ALL), leading to formation of a fusion gene (E2A-PBX1) that encodes a hybrid transcription factor with oncogenic potential. It is not known whether this molecular alteration is a uniform consequence of the t(1;19) or is restricted to translocation events within specific immunologic subtypes of the disease. Therefore, we studied leukemic cells from 25 cases of B-cell precursor ALL, with or without evidence of cytoplasmic Ig mu heavy chains (cIg); 17 cases had the t(1;19) by cytogenetic analysis. Leukemic cell DNA samples were analyzed by Southern blotting to detect alterations within the E2A genomic locus; a polymerase chain reaction assay was used to identify expression of chimeric E2A-pbx1 transcripts in leukemic cell RNA; and immunoblotting with anti-Pbx1 antibodies was used to detect hybrid E2A- Pbx1 proteins. Of 11 cases of cIg+ ALL with the t(1;19), 10 had E2A- pbx1 chimeric transcripts with identical junctions and a characteristic set of E2A-Pbx1 hybrid proteins. Each of these cases had E2A gene rearrangements, including the one in which fusion transcripts were not detected. By contrast, none of the six cases of t(1;19)-positive, cIg- ALL had evidence of rearranged E2A genomic restriction fragments, detectable E2A-pbx1 chimeric transcripts, or hybrid E2A-Pbx1 proteins. Typical chimeric E2A-pbx1 transcripts and proteins were detected in one of eight cIg+ leukemias in which the t(1;19) was not identified by cytogenetic analysis, emphasizing the increased sensitivity of molecular analysis for detection of this abnormality. We conclude that the molecular breakpoints in cases of cIg- B-cell precursor ALL with the t(1;19) differ from those in cIg+ cases with this translocation. Leukemias that express hybrid oncoproteins such as E2A-Pbx1 or Bcr-Abl have had a poor prognosis in most studies. Thus, molecular techniques to detect fusion genes and their aberrant products should allow more timely and appropriate treatment of these aggressive subtypes of the disease.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 583-583
Author(s):  
Elisabeth M.P. Steeghs ◽  
Isabel S. Jerchel ◽  
Willemieke de Goffau-Nobel ◽  
Alex Q. Hoogkamer ◽  
Judith M. Boer ◽  
...  

Abstract Background In high risk pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients, gain of function mutations and translocations affecting JAK2 have been described. These mutations and translocations result in aberrant kinase signaling and may therefore serve as an ideal target for precision medicines. Aim Evaluate the frequency and prognosis of JAK2 lesions among different subtypes of childhood BCP-ALL, and study the efficacy of the JAK1/2 inhibitors momelotinib and ruxolitinib. Methods This study comprised 77 BCR-ABL1-like cases and 76 B-other cases which were screened for JAK2 translocations using RT-PCR. Furthermore a representative pediatric cohort of 461 newly diagnosed BCP-ALL cases was screened for JAK2 mutations using targeted next-generation sequencing. Clinical analyses were performed in 341 BCP-ALL patients. Patient-derived-xenograft (PDX) cells were isolated from NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, which were injected with primary leukemic cells. Purity of PDX cells was enriched to over 90% and presence or absence of JAK2 lesions was validated. PDX and primary leukemic cells were exposed to a dilution series of momelotinib or ruxolitinib for four days. Where indicated, cells were pre-incubated with 25 ng/ml TSLP for 1 hour. In mono-culture assays, cytotoxicity was quantified using MTT and in co-culture assays flow cytometry was used. Leukemic cells were discriminated from mesenchymal stromal cells (MSCs) using CD19 and viability was assessed by Annexin V and Propidium Iodide. Western blotting was used to study protein expression levels. Results JAK2 translocations were detected in 6.5% of BCR-ABL1-like cases (3 PAX5-JAK2 cases, 1 TERF2-JAK2 case and 1 BCR-JAK2 case), but not in B-other cases. JAK2 mutations were identified in 3.5% of all BCP-ALL cases, which included JAK2 mutations in BCR-ABL1-like (7.6%), B-other (11.9%), and high hyperdiploid cases (1.6%), but not in MLL rearranged, BCR-ABL1-positive, ETV6-RUNX1-positive or TCF3-PBX1-positive cases. Cumulative incidence of relapse in patients harboring JAK2 lesions was as poor as in JAK2 wildtype BCR-ABL1-like and B-other patients. Efficacy of the JAK1/2 inhibitors momelotinib and ruxolitinib was examined in JAK2 lesion positive (primary and PDX) leukemic cells. Inhibitors were cytotoxic in both translocated and mutated cells, although efficacy in JAK2 mutated cells highly depended on CRLF2 activation by TSLP. CRLF2 activation resulted in downstream STAT5 activation and sensitization towards ruxolitinib compared to unstimulated cells (p < 0.05). Cells harboring JAK2 translocations signaled independently of CRLF2. Although momelotinib and ruxolitinib exposure blocked downstream STAT1/5 phosphorylation, both inhibitors also induced accumulation of phosphorylated JAK2Y1007. Consequently, release of the inhibitors resulted in a profound re-activation of JAK2 signaling, observed by upregulation of downstream STAT1/5 signaling. Furthermore, we observed microenvironment-induced resistance. Culturing leukemic cells in the presence of primary bone marrow MSCs induced resistance to ruxolitinib, compared to leukemic cells in single cultures (p < 0.05). A similar trend was observed for momelotinib. In addition, patients harboring JAK2 mutations displayed a heterogeneous leukemic cell population. Mouse xenograft models revealed different outgrowth patterns of leukemic cells, in which the JAK2 mutated clone persisted, decreased or even disappeared, resulting in outgrowth of JAK2 wildtype leukemic cells. Moreover, JAK2 mutations were not mutually exclusive for other pathway mutations (e.g. KRAS). Conclusion JAK2 translocations and mutations were detected in poor prognostic BCP-ALL cases. In ex vivo assays, the JAK1/2 inhibitors momelotinib and ruxolitinib were cytotoxic in JAK2 aberrant cells. Despite these promising findings, we identified certain limitations of these inhibitors. Inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon their release. Furthermore, our data suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and by microenvironment-induced resistance. Taken together, our data yield important directives for the clinical use of JAK inhibitors in pediatric BCP-ALL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 997-997 ◽  
Author(s):  
Linda Bendall ◽  
Rana Baraz ◽  
Julius Juarez ◽  
Sylvie Shen ◽  
Ken Bradstock

Abstract The chemokine SDF-1 regulates leukemic cell motility and proliferation but the importance of these functions in the growth and dissemination of leukemia is unclear. We examined SDF-1-mediated responses of cells from 27 cases of acute lymphoblastic leukemia (ALL). Although cells from the majority of cases showed chemotactic and proliferative responses to SDF-1, a subset of cases (18%) did not undergo chemotaxis in response to SDF-1 (unresponsive cases). These unresponsive cases also failed to increase b1 integrin-mediated adhesion to fibronectin or adhesion to bone marrow fibroblast layers. However the unresponsive cases could still elicit a calcium flux in response to SDF-1 and three of the four cases internalised the receptor, CXCR4, following exposure to SDF-1. In contrast, the CXCR4 antagonist, TC14012, inhibited proliferation of both responsive and unresponsive cases in stromal-dependent cultures, demonstrating that the unresponsive cases were still able to undergo proliferative responses to SDF-1. Examination of the signalling pathways activated by SDF-1 in responsive cells revealed increased phosphorylation of AKT, ERK and p38 MAPK 2 to 5 minutes following stimulation. However, cells from the unresponsive cases failed to phosphorylate p38 MAPK kinase when stimulated with SDF-1, while phosphorylation of AKT and ERK were comparable with that observed in responsive ALL cases. Inhibition of p38 MAPK by SB203500 completely inhibited the chemotaxis of responsive ALL cells to SDF-1 gradients suggesting that signalling through p38 MAPK is essential for ALL cell chemotaxis. Therefore it is likely that the absence of p38 MAPK phosphorylation in unresponsive cases underlies their lack of chemotaxis to this chemokine. The ability of the unresponsive cases to undergo SDF-1 driven proliferation in the absence of p38 MAPK phosphorylation suggests that, despite being absolutely required for chemotactic responses, induction of phosphorylation of p38 MAPK is not required for proliferative responses. No correlation was observed between CXCR4 expression and chemotactic function, in vitro migration into bone marrow stromal layers, and engraftment of leukemic cells in NOD/SCID mice. This study suggests that signalling through p38 MAPK is required for ALL cell chemotaxis, but not for proliferation, and that chemotactic responses to SDF-1 are not essential for leukemic cell engraftment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4879-4879
Author(s):  
Marinella Veltroni ◽  
Maddalena Paganin ◽  
Chiara Frasson ◽  
Giulia Fabbri ◽  
Antonio Marzollo ◽  
...  

Abstract Recent studies suggest that the majority of malignant cells found in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) arise from a rare population of leukemic progenitors. Little information is available on the presence of clonal rearrangements in cells at the stage of early precursor. To address this issue we analyzed clonality profile of early leukemic precursors sorted by flow-cytometry. Leukemic cells were obtained from bone marrow samples collected at diagnosis from 6 patients with childhood BCP-ALL. Furthermore, bone marrow cells were collected from 3 healthy children who were harvested for bone marrow donation. Three subpopulations of leukemic cells were investigated: total unsorted blasts, the sorted CD34+/CD38−/CD19+, and the sorted CD34+/CD38−/CD19− cells. Immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements were screened by polymerase chain reaction (PCR) in the sorted populations and in the bulk leukemic cells in order to identify molecular markers of clonal evolution. Sequence analysis was then performed on the N-region. Overall, a total of 38 different Ig/TCR gene rearrangements were identified in the 3 cell populations under study (total blasts, CD34+/CD38−/CD19+, and CD34+/CD38−/CD19−). Of them, 13 (34%) were found in the three populations; 12 (31%) were found in two of the three populations: 7 in total blasts and CD19+ subset, 3 in total blasts and CD19−, 2 in CD19− and CD19+; finally, 13 were found only in one subpopulation: 4 in total blast cell, 5 in CD19+, 4 in CD19−. In all the six patients studied, BCP-ALL progenitors CD34+/CD38−/CD19− and CD19+ and the bulk tumor blasts shared at least one Ig/TCR gene clonal rearrangement with the same N-region. In 5 out of 6 patients at least one rearrangement detected in the BCP-ALL progenitors was undetectable in total blasts. Conversely, in 3 patients the clonal rearrangement observed in the bulk leukemic cells was not identified in any of the two sorted ALL precursor populations. Clonal rearrangement was never detected in the samples from healthy bone marrow donors. Our findings confirm that clonal rearrangement may be detected at the stage of early B-lineage precursor CD34+/CD38−/CD19−, suggesting that leukemic transformation may occur at this stage or even before in BCP-ALL. We plan to extend this observation by repopulating studies in NOD/SCID mice.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2643-2643 ◽  
Author(s):  
Lieke C.J. van den Berk ◽  
Arian van der Veer ◽  
Marieke E. Willemse ◽  
Myrte J.G.A. Theeuwes ◽  
Mirjam W. Luijendijk ◽  
...  

Abstract Malignant cells that infiltrate the bone marrow (BM) interfere with the normal cellular behavior of supporting cells, thereby creating an alternative malignant niche. This intercellular communication is mostly mediated by cytokines and their receptors. In this study, we find that expression of the CXCR4 receptor is significantly increased in pediatric precursor B-cell acute lymphoblastic leukemia (BCP-ALL) cells compared with normal mononuclear hematopoietic cells derived of the bone marrow (p=0.016). Furthermore, we show that high CXCR4 expression is correlated with an unfavorable clinical outcome in BCP-ALL (5-yr CIR ±SE: 38.4% ±6.9% in CXCR4-high versus 12.0% ±4.6% in CXCR4-low expressing patients, p<0.001). Interestingly, BM serum levels of the CXCR4 ligand (CXCL12) are 2.7-fold lower (p=0.005) in samples taken at initial diagnosis of BCP-ALL compared with the levels in samples taken of non-leukemic controls. We show that induction chemotherapy restores CXCL12 levels in the BM to normal levels. Blocking the CXCR4 receptor with Plerixafor (FDA-approved drug) showed that the lower CXCL12 serum levels at initial diagnosis could not be explained by consumption by the leukemic cells, nor did we observe an altered CXCL12-production capacity of BM-MSC at this time-point. We rather observed that a very high density of leukemic cells negatively affected CXCL12 production by the BM-MSC while stimulating the secretion levels of G-CSF. These results suggest that highly proliferative leukemic cells are able to down-regulate the production of cytokines involved in homing (CXCL12), while simultaneously up-regulating the production of cytokines involved in hematopoietic mobilization (G-CSF). This disbalance may stimulate the spreading of BCP-ALL outside the BM. The data presented here suggest that interference with the CXCR4/CXCL12 axis (for instance by using Plerixafor) may be an effective way to mobilize BCP-ALL cells; the more ALL cells become mobilized, the less ALL cells may escape from combination chemotherapy. In proof-of concept studies, this hypothesis needs to be validated to pave the way for implementation in future treatment protocols for children with ALL. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document