Activity of Bendamustine (TREANDA™) in Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma Cells with Alterations in DNA Damage Response Pathway.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2510-2510
Author(s):  
Gaël Roué ◽  
Mónica López-Guerra ◽  
Pierre Milpied ◽  
Patricia Pérez-Galán ◽  
Neus Villamor ◽  
...  

Abstract Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) are two different types of mature B-cell non-Hodgkin’s lymphoma (NHL). CLL has an indolent natural history and patients are very responsive to frontline chemotherapy. Unfortunately, multiple relapses are inevitable, and ultimately, no regimen or treatment strategy offers a distinct survival benefit over another. In contrast, patients with MCL generally experience a more aggressive course, with rapid disease progression and also without specific therapeutic options. Bendamustine hydrochloride (Treanda™) is a multifunctional, alkylating agent that exhibits single-agent activity in multiple hematologic and solid tumors. Recently, the combination of bendamustine with rituximab has demonstrated to be a highly active regimen in the treatment of low-grade lymphomas and MCL. However, very little is known about its mode of action. The ability of bendamustine to induce apoptosis in vitro in MCL and CLL cells and the mechanisms implicated in bendamustine-evoked cell death signaling were investigated. Bendamustine exerted cytostatic and cytotoxic effects in 11 MCL cell lines and primary tumor cells from 7 MCL patients and 10 CLL patients independent of their p53 status, and other gene alterations. In vitro treatment of cells with bendamustine induced activation of both p53-dependent and -independent signaling pathways that converged in all cases to the activation of the pro-apoptotic protein Noxa, conformational changes of Bax and Bak, and mitochondrial depolarization. These events led to cytosolic release of the mitochondrial apoptogenic factors cytochrome c, Smac/DIABLO and AIF, and activation of both caspase -dependent and -independent cell death. Genotoxic stress and caspase-independent cell death are often associated with the generation of reactive oxygen species (ROS). We observed that ROS production was a key step in the induction of apoptosis by bendamustine, since pre-incubation of tumor cells with ROS scavengers reverted all the typical hallmarks of apoptosis. Furthermore, bendamustine exerted a cytotoxic effect in p53 deleted CLL cases that were resistant to fludarabine treatment. These findings support the use of bendamustine as a therapeutic agent in MCL and CLL cells and also establish the basis for the use of bendamustine in lymphoid malignancies that show resistance to classic genotoxic agents that depend on cellular p53 status.

2010 ◽  
Vol 16 (7) ◽  
pp. 2046-2054 ◽  
Author(s):  
Faustino Mollinedo ◽  
Janis de la Iglesia-Vicente ◽  
Consuelo Gajate ◽  
Ander Estella-Hermoso de Mendoza ◽  
Janny A. Villa-Pulgarin ◽  
...  

2010 ◽  
Vol 3 (2-3) ◽  
pp. 91-99 ◽  
Author(s):  
Joana Perdigão ◽  
Helena Alaiz ◽  
Paulo Lúcio ◽  
Paula Gameiro ◽  
Marta Sebastião ◽  
...  

Blood ◽  
2018 ◽  
Vol 131 (21) ◽  
pp. 2283-2296 ◽  
Author(s):  
Xose S. Puente ◽  
Pedro Jares ◽  
Elias Campo

Abstract Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are 2 well-defined entities that diverge in their basic pathogenic mechanisms and clinical evolution but they share epidemiological characteristics, cells of origin, molecular alterations, and clinical features that differ from other lymphoid neoplasms. CLL and MCL are classically considered indolent and aggressive neoplasms, respectively. However, the clinical evolution of both tumors is very heterogeneous, with subsets of patients having stable disease for a long time whereas others require immediate intervention. Both CLL and MCL include 2 major molecular subtypes that seem to derive from antigen-experienced CD5+ B cells that retain a naive or memory-like epigenetic signature and carry a variable load of immunoglobulin heavy-chain variable region somatic mutations from truly unmutated to highly mutated, respectively. These 2 subtypes of tumors differ in their molecular pathways, genomic alterations, and clinical behavior, being more aggressive in naive-like than memory-like–derived tumors in both CLL and MCL. The pathogenesis of the 2 entities integrates the relevant influence of B-cell receptor signaling, tumor cell microenvironment interactions, genomic alterations, and epigenome modifications that configure the evolution of the tumors and offer new possibilities for therapeutic intervention. This review will focus on the similarities and differences of these 2 tumors based on recent studies that are enhancing the understanding of their pathogenesis and creating solid bases for new management strategies.


2010 ◽  
Vol 34 (9) ◽  
pp. 1235-1238 ◽  
Author(s):  
Dragan Jevremovic ◽  
Roxana S. Dronca ◽  
William G. Morice ◽  
Ellen D. McPhail ◽  
Paul J. Kurtin ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2591-2591
Author(s):  
Joshua D. Brody ◽  
Linhong Li ◽  
Stephanie Feller ◽  
Joseph Fratantoni ◽  
Ronald Levy

Abstract Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin’s lymphoma with the worst long-term prognosis of any NHL subtype. Current therapeutic options are unsatisfactory. MCL patients’ malignant B cells are ineffective antigen-presenting cells (APCs), perhaps resulting from low level expression of the immune co-stimulatory molecules that are essential to activate T cells upon interaction with the T-cell receptor. The MCL cells can be engineered to be effective APCs and thereby function as a therapeutic cellular vaccine in combination with chemotherapy and/or stem cell transplantation to eradicate residual disease. However, primary MCL cells are difficult targets for gene transfer by both viral and non-viral methodologies. Ligation of CD40 resulting from co-culturing with hCD40L expressing murine fibroblasts was shown to be superior to a panel of other immune stimulants and cytokines in upregulating co-stimulatory markers and inducing anti-tumor T cell responses (Hoogendoorn et al. 2005). We now report on a technology platform, based on electroporation of mRNA for CD40L, for the introduction of CD40L protein expression and subsequent induction of immune co-stimulatory molecules by MCL tumor cells. Primary MCL malignant B cells were obtained from patients’ lymph node biopsies by mechanical dissociation, placed in single cell suspension and cryopreserved prior to modification. Full-length 5′-end capped hCD40L mRNA transcript was generated by in vitro transcription with a commercially available T7 polymerase kit. The transfected MCL cells were immunostained with fluorophore-conjugated monoclonal antibodies against hCD40L, hCD80 and 86 then analyzed by FACS. Data showed hCD40L could be detected in ≥ 80% of the transfected MCL cells as early as 2 hrs post transfection. At 3 days post manipulation, hDC40L expression could be detected on approximately 30% of the transfected MCL cells. Cell viability remained at approximately 80% during the 3 day in vitro culturing. FACS analysis of the immune co-stimulatory molecules revealed that forced expression of hCD40L caused an up-regulation of CD80/86, which was increased approximately 10 fold compared to the expression levels in naïve, non modified cells. The increased expression level of CD80/86 was maintained for 3 days. Furthermore, when the hCD40L modified MCL cells were mixed with allogeneic PBMC, they stimulated IFN-γ production at a level 4 fold higher than was observed with naïve, non modified MCL cells mixed with allogeneic PBMC. This provides proof-of-concept that MCL cells modified by mRNA-hCD40L transfection have the potential to be used as a cellular vaccine. Such transduced cells function to protect animals from tumor challenge. The process can be scaled up to produce >2×1010 modified tumor cells. This simple, non-viral cell manipulation system is practical and will be a useful tool for immunotherapy of human hematopoietic malignancies such as MCL.


Blood ◽  
2012 ◽  
Vol 119 (2) ◽  
pp. 476-487 ◽  
Author(s):  
Mamta Gupta ◽  
Andrea E. Wahner Hendrickson ◽  
Seong Seok Yun ◽  
Jing Jing Han ◽  
Paula A. Schneider ◽  
...  

Abstract The mammalian target of rapamycin (mTOR) plays crucial roles in proliferative and antiapoptotic signaling in lymphoid malignancies. Rapamycin analogs, which are allosteric mTOR complex 1 (mTORC1) inhibitors, are active in mantle cell lymphoma and other lymphoid neoplasms, but responses are usually partial and short-lived. In the present study we compared the effects of rapamycin with the dual mTORC1/mTORC2 inhibitor OSI-027 in cell lines and clinical samples representing divers lymphoid malignancies. In contrast to rapamycin, OSI-027 markedly diminished proliferation and induced apoptosis in a variety of lymphoid cell lines and clinical samples, including specimens of B-cell acute lymphocytic leukemia (ALL), mantle cell lymphoma, marginal zone lymphoma and Sezary syndrome. Additional analysis demonstrated that OSI-027–induced apoptosis depended on transcriptional activation of the PUMA and BIM genes. Overexpression of Bcl-2, which neutralizes Puma and Bim, or loss of procaspase 9 diminished OSI-027–induced apoptosis in vitro. Moreover, OSI-027 inhibited phosphorylation of mTORC1 and mTORC2 substrates, up-regulated Puma, and induced regressions in Jeko xenografts. Collectively, these results not only identify a pathway that is critical for the cytotoxicity of dual mTORC1/mTORC2 inhibitors, but also suggest that simultaneously targeting mTORC1 and mTORC2 might be an effective anti-lymphoma strategy in vivo.


Sign in / Sign up

Export Citation Format

Share Document