Rapid Expansion of Acute Myeloid Leukemia-Reactive Cytotoxic T Cells from CD8+CD62L+ Blood Lymphocytes of HLA-Matched Healthy Donors In Vitro

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3238-3238
Author(s):  
Eva Distler ◽  
Catherine Woelfel ◽  
Sylvia Pesth ◽  
Nina Kraus ◽  
Thomas C. Wehler ◽  
...  

Abstract Allogeneic cytotoxic T-lymphocyte (CTL) therapy in acute myeloid leukemia (AML) is hampered by the poor efficiency of growing leukemia-reactive CTLs from healthy donors in vitro. We established an allogeneic mini-mixed lymphocyte-leukemia culture (MLLC) approach by stimulating comparably small numbers (104/well) of CD8+ T cells isolated from healthy donors against irradiated primary AML blasts in 96-well plates. Prior to use, CD8+ T cells were immunomagnetically separated into a CD62L(high)+ subset enriched for naive precursors and central memory cells as well as a CD62L(low)+/negative subset containing effector memory cells. The culture medium contained IL-7, IL-12, and IL-15. After 2 weeks, IL-12 was replaced by IL-2. Mini-MLLCs were performed in seven different healthy donor-AML pairs that were matched for HLA class I according to high-resolution molecular typing. Following 2 weekly re-stimulations with primary AML blasts, mini-MLLC responder populations were analyzed for reactivity on day 19 of culture using split-well IFN-gamma ELISPOT assays. AML-reactive CD8+ T-cell responders were obtained from all 7 donor-AML pairs. The majority of reactive cultures originated from the CD62L(high)+ subfractions. In 4 out of 7 pairs MLLC responder populations mainly recognized AML blasts, but not Epstein-Barr virus transformed B-lymphoblastoid cell lines of donor and patient origin. The AML-reactive CD8+ T cells were restricted by single HLA class I alleles as determined by blocking experiments using a panel of HLA allele-specific monoclonal antibodies. Representative mini-MLLC responders demonstrated strong cytotoxicity against primary AML blasts in 51Chromium-release assay. Cross-reactivity testing identified an HLA-A*0201-restricted CTL population that recognized AML blasts much stronger than non-malignant monocytes of the same patient. This CTL neither recognized recipient-derived primary fibroblasts nor other hematopoietic cells suggesting a leukemia-associated rather than a minor histocompatibility antigen as the target structure. Several MLLC-derived CTL populations expressed unique T cell receptor Vbeta chains consistent with clonal origin from AML-reactive precursors. Multiple CTL responders reached a cell yield exceeding 108 after 6 to 10 weekly re-stimulations with AML blasts. Our results suggest that in healthy individuals most AML-reactive CD8+ CTLs originate from the CD62L(high)+ peripheral blood subpopulation containing naive precursor and central memory T cells. This mini-MLLC approach allows the rapid expansion of AML-reactive CD8+ CTLs from HLA-matched healthy donors to cell numbers sufficient for antigen identification strategies or adoptive immunotherapy trials.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1801-1801
Author(s):  
Stephanie Delluc ◽  
Lea Tourneur ◽  
Charlotte Boix ◽  
Anne-Sophie Michallet ◽  
Bruno Varet ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogenous group of diseases characterized by a clonal proliferation of myeloid progenitors. Its poor prognosis with conventional chemotherapy justifies seeking for adjuvant immunotherapeutic approaches to eliminate minimal residual disease. We evaluated an immunotherapeutic strategy that bypass the need for epitope identification and the limitation due to HLA restriction. Naturally processed peptides were extracted by acid elution from AML cells at diagnosis, and loaded on mature dendritic cells (mDCs) derived from autologous monocytes obtained when the patients were in complete remission (CR). We evaluated i) the feasibility to elute naturally processed peptides from AML cells at diagnosis, ii) the capacity of mDCs loaded with eluted peptides (mDC/EP) to stimulate specific T cell lines in vitro. We showed that stimulation by mDC/EP was able to generate anti-leukemic T cells lines from PBMC of 6 AML patients in CR. CD4+ and CD8+ T cells were isolated from T cell lines of 5 patients and analyzed for their proliferation, INF-γ production and cytotoxicity in response to autologous or allogeneic AML targets, or to normal autologous PBMC. We showed that both CD4+ and CD8+ leukemia-specific T cells were generated in vitro by mDC/EP stimulations since proliferation of CD4+ T cells, IFN-γ secretion by CD4+ and CD8+ T cells and cytotoxicity mediated by CD8+ T cells were induced in response to stimulation with autologous AML cells. Furthermore, we could not detect auto-immune recognition of autologous normal PBMC, consistent with the specificity of the T cell response induced by mDC/EP. These results provide the proof of concept for using mDC/EP to vaccinate patients with poor-risk AML, and will soon be evaluated in a phse I/II clinical trial.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2540-2540
Author(s):  
Michael Schmitt ◽  
Li Li ◽  
Mark Ringhoffer ◽  
Thomas Barth ◽  
Markus Wiesneth ◽  
...  

Abstract To improve the clinical outcome of patients with acute myeloid leukemia (AML), immune therapies targeting leukemia associated antigens (LAAs) might be an approach complementary to chemotherapy and transplantation of hematopoetic stem cells. The receptor for hyaluronic acid mediated motility (RHAMM/CD168) has been defined as a LAA with specific expression. To define T cell epitopes of RHAMM/CD168 towards specific T cell immunotherapies, ten peptides were synthesized considering different computer algorithms and subjected to ELISPOT assays for interferon gamma and granzyme B, and to Cr-51 release assays. CD8+ T cells taken from the peripheral blood (PB) of 13 AML patients and presensitized with the RHAMM/CD168-derived peptides R3 (ILSLELMKL) or R5 (SLEENIVIL) did specifically recognize T2 cells pulsed with R3/R5. In contrast, CD8+ T cells isolated from the PB of 21 healthy volunteers were not able to lyse R3 or R5 pulsed T2 cells, even after presensitization. COS7 cells co-transfected with HLA-A*0201 and RHAMM/CD168 were lysed by R3 or R5 presensitized CD8+ T cells. Single HLA-A*0201 or RHAMM/CD168 transfected COS7 were not recognized. Cross-reactivity of the T cells was excluded by the use of unrelated peptides. K562 cells positive for RHAMM/CD168, but lacking HLA-class I molecules were not recognized indicating T cells and not NK cells as effector cells. The HLA class-I restricted lysis of COS-7 HLA-A*0201 and RHAMM/CD168 double- transfectants was confirmed by HLA class-I blocking antibody experiments. In an AML patient having received AML blast-derived dendritic cells, a higher frequency of RHAMM/CD168-peptide specific T cells was observed after four vaccinations when compared to his T cell status before vaccination. RHAMM/CD168 is also expressed in patients with other hematological malignancies which suggests a broad clinical applicability of its newly characterized T cell epitope peptides as a potential cancer vaccine.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1517-1524 ◽  
Author(s):  
Marjan J. T. Veuger ◽  
M. Willy Honders ◽  
Jim E. Landegent ◽  
Roel Willemze ◽  
Renée M. Y. Barge

Deficiency of functional deoxycytidine kinase (dCK) is a common characteristic for in vitro resistance to cytarabine (AraC). To investigate whether dCK is also a target for induction of AraC resistance in patients with acute myeloid leukemia (AML), we determined dCK messenger RNA (mRNA) expression in (purified) leukemic blasts and phytohemagglutinin-stimulated T cells (PHA T cells) from patients with chemotherapy-sensitive and chemotherapy-resistant AML. In control samples from healthy donors (PHA T cells and bone marrow), only wild-type dCK complementary DNA (cDNA) was amplified. Also, in (purified) leukemic blasts from patients with sensitive AML, only wild-type dCK cDNAs were observed. These cDNAs coded for active dCK proteins in vitro. However, in 7 of 12 (purified) leukemic blast samples from patients with resistant AML, additional polymerase chain reaction fragments with a deletion of exon 5, exons 3 to 4, exons 3 to 6, or exons 2 to 6 were detected in coexpression with wild-type dCK. Deletion of exons 3 to 6 was also identified in 6 of 12 PHA T cells generated from the patients with resistant AML. The deleted dCK mRNAs were formed by alternative splicing and did code for inactive dCK proteins in vitro. These findings suggest that the presence of inactive, alternatively spliced dCK mRNA transcripts in resistant AML blasts may contribute to the process of AraC resistance in patients with AML.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1383-1383 ◽  
Author(s):  
Tongyuan Xue ◽  
Marissa Del Real ◽  
Emanuela Marcucci ◽  
Candida Toribio ◽  
Sonia Maryam Setayesh ◽  
...  

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The cure rate for primary AML patients is only 35% and decreases with age. Novel and effective immunotherapies for patients with relapsed and/or refractory (r/r) AML remain an urgent unmet need. CD33 is an attractive immunotherapeutic target for myeloid malignancies given its expression on more than 85% of AML patient samples. We therefore set out to design and test CD33 chimeric antigen receptor (CD33CAR) T cells preclinically as a single agent and in combinational therapy. To assess antileukemic responses of CD33CAR T cells in vitro and in vivo, we enriched CD4/CD8 T cells from peripheral blood mononuclear cells (PBMCs) and genetically modified them to express a second-generation CD33CAR. CD33CAR T cells exhibited potent antigen dependent CD107a degranulation, IFN-γ production and killing activities against AML cells in vitro. Using a NOD-SCID-IL2Rgnull (NSG) xenograft model engrafted with MOLM-14-ffluc, a CD33 expressing AML cell line transduced with lentivirus carrying firefly luciferase (ffluc) and enhanced green fluorescent protein (eGFP), 3 million CD33CAR or mock T cells were introduced intravenously. CD33 CAR T cell-treated group displayed 98.2% leukemic regression 4 days post CAR T infusion, and 99.6% reduction on day 31. Bioluminescent imaging (BLI) and Kaplan-Meier analysis demonstrated that CD33CAR T cells significantly decreased leukemic burden and prolonged overall survival compared to mock T cells in vivo. Decitabine, a DNA hypomethylating agent (HMA), is a main therapeutic agent for treating AML. We observed HMA treatment led to increased CD33 expression on MOLM-14 cells in vitro. We hypothesized that decitabine can potentiate CD33CAR T cell-mediated AML killing by increasing CD33 expression. MOLM-14 cells were treated with either decitabine alone, CD33CAR T cells alone, or sequential treatment using various concentrations of decitabine or DMSO followed by CD33CAR or mock T cells in an E:T ratio of 1:100. We determined the target specific killing activities in each group using flow cytometric based analysis 48 and 96 hours later. The decitabine followed by CD33CAR T cells treatment reproducibly resulted in the most robust antileukemic activity with 80.6% MOLM-14 cells killed. In comparison, CD33CAR T cells or decitabine monotherapy resulted in 11.5% and 50.9% killing, respectively. In vivo testing of the combinational effects of decitabine and CD33CAR T cells are underway and will be updated at the meeting. Finally, checkpoint blockade targeting programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) has shown survival benefits, particularly in combination with HMA, for patients with r/r AML (Daver et al. 2019). We observed elevated PD-L1 expression on residual AML blasts that survived the treatment with decitabine in combination with CD33CAR T cells. Therefore, we hypothesized that blockade of PD-1/PD-L1 interaction might further improve the antileukemic effect of CD33CAR T cells against AML cells post antigen induction by decitabine. MOLM-14 cells were treated with decitabine for 2 days and CD33CAR T cells were added in an E:T ratio of 1:75. Anti-PD-1 or IgG4 antibody was added to the culture at various concentrations. The most robust CD33 specific killing was seen in the culture with anti-PD-1 antibody added. Further characterization are underway and will be presented. Taken together, our preclinical findings have demonstrated the potency of the CD33CAR T cell therapy and ways to optimize its efficacy. Our results support clinical translation of CD33CAR T cells for patients with AML. Disclosures Budde: F. Hoffmann-La Roche Ltd: Consultancy.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1517-1524 ◽  
Author(s):  
Marjan J. T. Veuger ◽  
M. Willy Honders ◽  
Jim E. Landegent ◽  
Roel Willemze ◽  
Renée M. Y. Barge

Abstract Deficiency of functional deoxycytidine kinase (dCK) is a common characteristic for in vitro resistance to cytarabine (AraC). To investigate whether dCK is also a target for induction of AraC resistance in patients with acute myeloid leukemia (AML), we determined dCK messenger RNA (mRNA) expression in (purified) leukemic blasts and phytohemagglutinin-stimulated T cells (PHA T cells) from patients with chemotherapy-sensitive and chemotherapy-resistant AML. In control samples from healthy donors (PHA T cells and bone marrow), only wild-type dCK complementary DNA (cDNA) was amplified. Also, in (purified) leukemic blasts from patients with sensitive AML, only wild-type dCK cDNAs were observed. These cDNAs coded for active dCK proteins in vitro. However, in 7 of 12 (purified) leukemic blast samples from patients with resistant AML, additional polymerase chain reaction fragments with a deletion of exon 5, exons 3 to 4, exons 3 to 6, or exons 2 to 6 were detected in coexpression with wild-type dCK. Deletion of exons 3 to 6 was also identified in 6 of 12 PHA T cells generated from the patients with resistant AML. The deleted dCK mRNAs were formed by alternative splicing and did code for inactive dCK proteins in vitro. These findings suggest that the presence of inactive, alternatively spliced dCK mRNA transcripts in resistant AML blasts may contribute to the process of AraC resistance in patients with AML.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2555-2555 ◽  
Author(s):  
Roman Galetto ◽  
Céline Lebuhotel ◽  
Agnès Gouble ◽  
Nuria Mencia-Trinchant ◽  
Cruz M Nicole ◽  
...  

Abstract The remissions achieved using autologous T-cells expressing chimeric antigen receptors (CARs) in patients with advanced B cell leukemia and lymphomas have encouraged the use of CAR technology to treat different types of cancers by targeting distinct tumor-specific antigens. Since the current autologous approach utilizes CAR T-cells manufactured on a "per patient" basis, we propose an alternative approach based on the use of a standardized platform for manufacturing T-cells from third-party healthy donors to generate allogeneic "off-the-shelf" CAR T-cell-based frozen products. In the present work we have adapted this allogeneic platform to the production of T-cells targeting CD123, the transmembrane alpha chain of the interleukin-3 receptor, which is expressed on tumor cells from the majority of patients with Acute Myeloid Leukemia (AML). Multiple antigen recognition domains were screened in the context of different CAR architectures to identify candidates displaying activity against cells expressing variable levels of the CD123 antigen. The three lead candidates were tested in an orthotopic human AML cell line xenograft mouse model. From the three candidates that displayed comparable activity in vitro, we found two candidates capable of eradicating tumor cells in vivo with high efficiency. Subsequently, Transcription Activator-Like Effector Nuclease (TALEN) gene editing technology was used to inactivate the TCRα constant (TRAC) gene, eliminating the potential for engineered T-cells to mediate Graft versus Host Disease (GvHD). Editing of the TRAC gene can be achieved at high frequencies, and allows efficient amplification of TCR-deficient T-cells that no longer mediate alloreactivity in a xeno-GvHD mouse model. In addition, we show that TCR-deficient T-cells display equivalent in vitro and in vivo activity to non-edited T-cells expressing the same CAR. We have performed an initial evaluation of the expression of CD123 in AML patients and found an average cell surface expression of CD123 was of 67% in leukemic blasts (95% CI 48-82), 71% in CD34+CD38+ cells (95% CI 56-86), and 64% in CD34+CD38- (95% CI 41-87). Importantly, we have found that CD123 surface expression persists in CD34+CD38-CD90- cells after therapy in at least 20% of patients in remission (n=25), thus emphasizing the relevance of the target. Currently, the sensitivity of primary AML cells to CAR T-cells is being tested. Finally, we will also present our large scale manufacturing process of allogeneic CD123 specific T-cells from healthy donors, showing the feasibility for this off-the-shelf T-cell product that could be available for administration to a large number of AML patients. Disclosures Galetto: Cellectis SA: Employment. Lebuhotel:Cellectis SA: Employment. Gouble:Cellectis SA: Employment. Smith:Cellectis: Employment, Patents & Royalties.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4794-4794
Author(s):  
Ebtesam Nafie ◽  
Mathias Oelke ◽  
Melissa Valerio ◽  
Sojung Kim ◽  
Ivan Rodriguez ◽  
...  

Abstract Introduction Acute myeloid leukemia (AML), the most common acute leukemia in adults, is characterized by uncontrolled proliferation of immuature myeloid cells. Despite newly approved drugs, AML remains largely incurable due to the persistence of the leukemia stem cell (LSC) population which lie quiescent in the bone marrow niche. Immunotherapy has potential to eradicate LSCs, however, no unique LSC immunophenotype has been identified. Moreover, it is necessary to simultaneously target multiple antigens (Ags) to prevent immune escape and to overcome refractory disease. We present in vitro studies in support of a therapeutic platform capable of targeting multiple intracellular Ags which could meet this challenge. The adoptive transfer of activated T cells primed to engage diverse AML associated epitopes by ex vivo exposure to artificial Ag presenting cells (aAPC) has the potential to eliminate both primary leukemia blasts and LSCs. Hypothesis Ex vivo enrichment and expansion (E+E) of antigen-educated CD8+ T cells recognizing 5 peptides derived from 3 proteins, Cyclin A1, PRAME and WT1, can selectively identify, engage, and kill AML cell lines or patient-derived (PD) AML blasts in a HLA A*02:01 restricted manner in vitro. Materials and Methods T cells from the peripheral blood mononuclear cell fraction of a healthy HLA A*02:01 donor were enriched for antigen-educated CD8+/CD4 -T cells. These cells were cultured with nanoparticles decorated with the 5 peptides and a costimulatory protein, resulting in the activation and expansion of those T cells expressing the cognate T cell receptors. These cells are composed of ~97% abT cells, 3% gdT cells and ~13% T scm, 41.5% T cm, 39.5%T em, 6%T emra and 1% T n. Results Ex vivo expanded educated T cells exhibit target-specific anti-AML activity. T cell mediated cell apoptosis of HLA-matched THP1 cells is dose and time-dependent. At 10:1 effector to target (E:T) ratio, ~28% apoptosis occurred at 24 hrs, while apoptosis was at basal levels when antigen non-educated T cells were used (data not shown). Studies were extended to PD AML cells (Fig. 1A: 012; Fig. 1B: 415) where antigen educated T cells elicited rapid (<16 hrs) and extensive (~90%) apoptosis of target PD AML cells at all E:T ratios examined. Time lapse photography of T cell/PD AML incubations revealed antigen-educated T cells clustered around AML cells (Fig. 2A), a fraction of the latter disappearing over the course of 12 hrs while PD AML cells incubated with non-educated T cells (Fig. 2B) remained viable over 12 hrs. Furthermore, there is little or no T cell movement or clustering in the wells with unprimed, non-active T cells. Release of IFN-γ by educated T cells. T cells (Fig.3A: antigen-educated through E+E) were incubated at E:T::5:1 for 24 to 48 hrs and IFN-γ in supernatants measured. The fold difference over non-educated T cells incubated with AML cells for the same time is shown and can reach over 5-fold. IFN-γ accumulation was time-dependent where antigen-educated T cells were combined with HLA-A2 matched THP1 or PD AML cells (012, 415, 470). Educated T cells were not active against target cells lacking HLA-A2 (K562) demonstrating HLA restricted killing (Fig. 3B). Additionally, antigen-educated T cells incubated without any target released slightly more IFN-γ than non-educated T cells under similar conditions but AML cells fail to stimulate IFN-γ release from non-educated T cells (data not shown). Conclusions We demonstrate HLA restricted cytotoxic activity of antigen-educated T cells against THP1 AML cells and PD AML blasts as shown by flow cytometry and microscopy. Consistent with target cell death, the supernatants from assays with antigen-educated T cells and HLA A*02:01 AML target cells exhibited over 5-fold more IFN-γ than media from assays of non-educated cells under identical conditions. Under these in vitro conditions, PD AML blasts were more readily killed than THP1 cells perhaps due to higher target antigen density (data not shown). These results support the use of multi-antigen-educated T cells for adoptive transfer to treat AML. To investigate the safety and establish the recommended phase II dose, a multi-center Phase I clinical study is underway in relapsed AML post-allo-HCT (NCT 04284228). Future studies will incorporate new antigens to enable broader targeting of a heterogeneous population of AML within and across patients Figure 1 Figure 1. Disclosures Oelke: Neximmune, Inc: Current Employment. Kim: Neximmune, Inc: Current Employment. Marcucci: Agios: Other: Speaker and advisory scientific board meetings; Novartis: Other: Speaker and advisory scientific board meetings; Abbvie: Other: Speaker and advisory scientific board meetings. Al Malki: Jazz Pharmaceuticals, Inc.: Consultancy; Hansa Biopharma: Consultancy; Neximmune: Consultancy; CareDx: Consultancy; Rigel Pharma: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3336-3336
Author(s):  
Estefania Garcia-Guerrero ◽  
Luis I. Sanchez-Abarca ◽  
Esther Domingo ◽  
Teresa Ramos ◽  
Jose Antonio Bejarano-García ◽  
...  

Abstract Introduction Autologous adoptive T cell therapies, based on the use of tumor infiltrating lymphocytes (TILs), have made great progress in recent years for the treatment of solid tumors, especially melanoma. However, further work is needed to isolate tumor-reactive T cells among patients diagnosed with hematologic malignancies. The dynamics of the interaction between T cells and antigen presenting cells (APC) dictate the quality of the immune responses. While stable joints between target cells and T lymphocytes lead to the induction of T cell activation and immune response, brief contacts contribute to the induction of immune-tolerance. Taking advantage of the strong interaction between target cell and activated T-cells, we show the feasibility to identify and isolate tumor-specific cytotoxic T lymphocytes (CTLs) from acute myeloid leukemia (AML) patients. Using this approach, CTLs stably bound through T cell receptor to tumor cells (doublet forming T-cells) can be identified in peripheral blood and bone marrow and subsequently selected and isolated by FACS-based cell sorting. Methods Co-cultures between PBMC from AML patients in complete remission and AML tumor cells (PKH-stained) from the same patient were performed to study the percentage of doublet-forming T cells (CD3+PKH+) (T cell bound to a tumor cell). After 15 hours of co-culture, cells were stained and sorted. Secondary co-cultures with autologous tumor cells (used in primary co-culture) were performed to study the cytotoxic activity and cytokine production of T-cells capable or not to form stable joints with the leukemic cells (doublet population vs non-doublet population). Results Doublet-forming T cells from AML patients were identified in a range of 2% to 6% (mean=3.83%, n=5). Immunophenotyping analysis showed differences between doublet-forming T cells (CD3+PKH+) and those T cells which did not form stable and strong interactions with target cells (CD3+PKH-). Doublet T cells displayed a higher percentage of CD8+ T cells and higher percentage of effector CD4+ and CD8+ T cells compared to non-doublet T cells. Next, we explored, among effector CD4+ and CD8+ cells, those with cytotoxic phenotype. As expected, a high percentage of effector CD8+ doublet T cells showed Granzyme B and perforin expression, thus corresponding with a cytotoxic immune-phenotype (n=3, mean 65.51%). Within effector CD4+ doublet T cells, a mean of 9.053 % showed expression of both Granzyme B and perforin corresponding with CD4+ CTL (n=3). Regarding CD57 and CD16 markers, a mean of 18.62% of effector CD4+ doublet T cells were positive for both markers, compared to 65.84% of effector CD8+ doublet T cells (n=3). Further, we performed secondary co-cultures to analyze the CD69 activation marker after 24h of co-culture. A high percentage of CD69+ cells was observed in co-cultures with doublet-forming T cells against target cells as compared to non-doublet T cells (n=3, p=0.0053). Finally, analysis of supernatants of co-culture of doublet T cells and non-doublet T cells with target cells revealed specific secretion of IFNγ and IL-2 (n=3, p=0.0001; p=0.0005, respectively). The cytolytic activity was evaluated comparing the viability of tumor cells cultured alone or with doublet-forming T cells or non-doublet T cells from the same patient. A significant increase of the specific lysis of AML cells was observed when doublet T cells were co-cultured as compared to non-doublet T cells (p=0.0424, n=5). This encouraged us to examine whether we were able to identify doublet-forming T cells from bone marrow of AML patients at diagnosis. Analyses of bone marrow by flow cytometry reveled a small percentage of CD3+CD34+ population corresponding with bone marrow-doublet-forming T cells (n=3, mean=2.9%). Interestingly, bone marrow-doublet-forming T cells show a higher percentage of CD4+ T cells, whereas bone marrow-non-doublet T cells show a higher percentage of CD8+ T cells. Conclusions Our data demonstrate that when T cells from AML patients are co-cultured with tumor cells, a "doublet T cell" population appears. This population consists of T cells capable to bind tumor cells. These CTLs display higher percentage of effector cells and a marked cytotoxic activity against AML blasts. In conclusion, we have developed a new procedure to identify and select specific cytotoxic T cells in both bone marrow and peripheral blood from patients diagnosed with acute myeloid leukemia. Figure. Figure. Disclosures Sanchez-Abarca: Virgen del Rocio University Hospital: Patents & Royalties. Ramos:Takeda Oncology: Research Funding.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
A. Dutour ◽  
V. Marin ◽  
I. Pizzitola ◽  
S. Valsesia-Wittmann ◽  
D. Lee ◽  
...  

Genetic engineering of T cells with chimeric T-cell receptors (CARs) is an attractive strategy to treat malignancies. It extends the range of antigens for adoptive T-cell immunotherapy, and major mechanisms of tumor escape are bypassed. With this strategy we redirected immune responses towards the CD33 antigen to target acute myeloid leukemia. To improvein vivoT-cell persistence, we modified human Epstein Barr Virus-(EBV-) specific cytotoxic T cells with an anti-CD33.CAR. Genetically modified T cells displayed EBV and HLA-unrestricted CD33 bispecificityin vitro. In addition, though showing a myeloablative activity, they did not irreversibly impair the clonogenic potential of normal CD34+hematopoietic progenitors. Moreover, after intravenous administration into CD33+human acute myeloid leukemia-bearing NOD-SCID mice, anti-CD33-EBV-specific T cells reached the tumor sites exerting antitumor activityin vivo. In conclusion, targeting CD33 by CAR-modified EBV-specific T cells may provide additional therapeutic benefit to AML patients as compared to conventional chemotherapy or transplantation regimens alone.


Sign in / Sign up

Export Citation Format

Share Document