Importance of PI3 Kinase Family for Crosstalk between Chronic Lymphocytic Leukemia B Cells and the Stromal Microenvironment: Therapeutic Implications.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1125-1125
Author(s):  
Matthias T.W. Niedermeier ◽  
Justyna Rawluk ◽  
Zachary Knight ◽  
Kevan Shokat ◽  
William G. Wierda ◽  
...  

Abstract Nontumoral accessory cells such as marrow stromal cells (MSC) or nurselike cells (NLC), which constitute the leukemia microenvironment, constitutively secrete the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12). CXCL12 transduces signals via its receptor CXCR4, which is expressed at high levels by Chronic Lymphocytic Leukemia (CLL) B cells. Via the CXCL12-CXCR4 axis, CLL cells migrate and adhere to stromal cells. Adhesion to stromal cells protects CLL cells from spontaneous and drug-induced apoptosis in a contact-dependent fashion. Signaling pathways regulating these processes in CLL B cells are largely unknown. Here, we examined the importance of phosphatidyl-inositide 3-kinases (PI3-K) for migration and viability of CLL B cells using non-specific and isoform-specific PI3-K inhibitors. The importance of PI3-K for migration of CLL cells to CXCL12 was determined by transwell chemotaxis and pseudoemperipolesis (PEP) assays. Inhibition of PI3-K resulted in a significant reduction of CLL cell migration in chemotaxis and PEP assays. In comparison to untreated CLL cells, Ly 294002 inhibited chemotaxis to 65 ± 4.6% of untreated controls. Using a panel of isoform-specific PI 3-K inhibitors (PI-103, PIK-90, IC87114, TGX-115, ZK-75), we observed inhibition of chemotaxis by the multi-targeted compounds PI-103 (51.4 ± 0.2%) and PIK-90 (57.5 ± 8.9%), whereas p110beta and delta inhibition had no effect. We conclude from this part of the study that PI3-kinases play an important role for CXCR4 signaling in CLL B cells, mediating migratory responses and protection from apoptosis. Experiments with inhibitors of PI3-K with higher target selectivity suggest a dominant role for the class I PI3-K p110alpha for migration in response to CXCL12. Because adhesion to stroma mediates protection from chemotherapeutic drugs, we tested PI3-K inhibitors alone and in combination with fludarabine in CLL-stroma co-cultures. Pre-treatment of CLL cells with the PI3-K inhibitors Ly 294002, PI-103, and PIK-90 resulted in a significant decrease in viability of CLL cells co-cultured with and without stroma. Moreover, PI3-K isoform specific inhibitors enhance the cytotoxicity of Fludarabine and partially reverse the protective effect of stromal cells on fludarabine-induced apoptosis. Collectively, this study establishes that PI3-Ks play an important role in CXCR4 signaling for CLL cell migration and adhesion to stromal cells. New, isoform-specific PI3-K inhibitors enhance the cytotoxicity of fludarabine in suspension cultures and in co-cultures with stromal cells. Therefore, the therapeutic potential of PI3-K inhibitors alone or in combination with fludarabine should further be investigated. Figure. Figure.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2887-2887
Author(s):  
Manoj Kumar Kashyap ◽  
Deepak Kumar ◽  
Harrison Jones Jones ◽  
Michael Y. Choi ◽  
Johanna Melo-Cardenas ◽  
...  

Abstract Abstract 2887 Chronic lymphocytic leukemia (CLL) remains incurable despite advances in the biology and treatment of this disease. Current data support the notion that resistance to therapy is promoted by a “protective” tumor microenvironment in which non-leukemia cells produce factors that enhance the resistance of CLL cells to spontaneous or drug-induced apoptosis. One such factor is the chemokine CXCL12, which interacts with its receptor CXCR4 on CLL cells to promote cancer cell survival. To examine the therapeutic potential of blocking CXCL12-CXCR4 interactions, we studied the effect of BMS-936564, a fully human IgG4 anti-CXCR4 antibody, using an in vitro co-culture model of human bone marrow derived stomal-NKter cells – leukemia cell interaction. Such stromal-NKter cells secrete CXCL12 and enhance the resistance of CLL cells to apoptosis in vitro. We observed that primary CLL cells co-cultured with stromal-NKter cells had significantly greater viability than CLL cells cultured alone (20–60% above baseline at 48 hours). Moreover, CLL cells co-cultured with stromal cells had enhanced resistance to drug-induced apoptosis. We found that BMS-936564 antibody at concentrations of 2–200nM could enhance the rate of apoptosis of CLL cells cultured alone or in the presence of stromal cells. CLL cells that expressed unmutated IgVH genes or ZAP-70 appeared equally susceptible to treatment with BMS-936564 as did CLL cells that lack these adverse prognostic markers, as did CLL cells that harbored deletions in 17p13.2 and that were resistant to chemotherapeutic agents, such a fludarabine monophosphate. BMS-936564 antibody inhibited CXCL12 mediated F-Actin polymerization in CLL cells at lower concentrations (20–200nM) compared to AMD-3100 (Mozobil), a small molecule CXCR4 inhibitor (50–150μM). In addition, AMD-3100 did not induce apoptosis in CLL cells (10–300μM). In summary, we observed that the anti-CXCR4 antibody BMS-936564 inhibited CXCL12 mediated activation of the CXCR4 receptor in CLL cells and induced apoptosis in leukemia cells. The pro-apoptotic activity of BMS-936564 was observed in cells cultured alone or together with stromal cells suggesting that this antibody had direct cytotoxic effect on leukemia cells and that it can overcome the protective tumor microenvironment. More over, the activity of BMS-936564 was independent of the presence of poor prognostic factors such as del(17p) suggesting that its mechanism of action is P53 independent. These findings show evidence that the CXCR4-CXCL12 pathway is a valid therapeutic target in CLL and provide additional biological rationale for ongoing clinical trials in CLL and other hematological malignancies using BMS-936564. Disclosures: Kuhne: Bristol-Myers Squibb: Employment. Sabbatini:Bristol-Myers Squibb: Employment. Cohen:Bristol-Myers Squibb: Employment. Shelat:Bristol-Myers Squibb: Employment. Cardarelli:Bristol-Myers Squibb: Employment. Kipps:Abbott: Consultancy, Research Funding.


Blood ◽  
2005 ◽  
Vol 106 (5) ◽  
pp. 1824-1830 ◽  
Author(s):  
Meike Burger ◽  
Tanja Hartmann ◽  
Myriam Krome ◽  
Justyna Rawluk ◽  
Hirokazu Tamamura ◽  
...  

Abstract Growth and survival of chronic lymphocytic leukemia (CLL) B cells are favored by interactions between CLL and nontumoral accessory cells. CLL cells express CXCR4 chemokine receptors that direct leukemia cell chemotaxis. Marrow stromal cells or nurselike cells constitutively secrete CXCL12, the ligand for CXCR4, thereby attracting and rescuing CLL B cells from apoptosis in a contact-dependent fashion. Therefore, the CXCR4-CXCL12 axis represents a potential therapeutic target in CLL. We evaluated the most active CXCR4-specific antagonists (T140, TC14012, TN14003) for their capacity to inhibit CXCL12 responses in CLL cells. T140, or its analogs, inhibited actin polymerization, chemotaxis, and migration of CLL cells beneath stromal cells. CXCL12-induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) was abolished by CXCR4 antagonists. TC14012 and TN14003 antagonized the antiapoptotic effect of synthetic CXCL12 and stromal cell-mediated protection of CLL cells from spontaneous apoptosis. Furthermore, we found that stromal cells protected CLL cells from chemotherapy-induced apoptosis. Treatment with CXCR4 antagonists resensitized CLL cells cultured with stromal cells to fludarabine-induced apoptosis. These findings demonstrate that CXCR4 blocking agents effectively antagonize CXCL12-induced migratory and signaling responses and stromal protection of CLL cells from spontaneous or fludarabine-induced apoptosis. As such, small molecular CXCR4 antagonists may have activity in the treatment of patients with this disease. (Blood. 2005;106:1824-1830)


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2802-2802
Author(s):  
Lingzhi Zhang ◽  
Fiona Murray ◽  
Joan R. Kanter ◽  
Daisy Chou ◽  
Laura Rassenti ◽  
...  

Abstract Non-specific inhibition of cyclic nucleotide phosphodiesterase (PDE) in chronic lymphocytic leukemia (CLL) cells leads to intracellular accumulation of cyclic nucleotides, which in turn can sensitize the CLL cells to spontaneous and/or drug-induced apoptosis. Recent studies have identified at least 11 isoforms of PDE, each of which catalyzes the hydrolysis of cAMP and/or cGMP and regulates the intracellular levels of cyclic nucleotides. The finding that various tissues differentially express selected PDE isoforms has prompted development of isoform-specific inhibitors that can selectively increase intracellular levels of cyclic nucleotides in target cells that over-express the inhibited PDE isoform. Accordingly, we examined for differential expression of PDE isoforms by CLL B cells by assessing the levels of mRNA encoding each of the 11 different PDE isoforms in CLL cells and normal blood lymphocytes using quantitative real-time RT-PCR. CLL cell samples (n = 24) and lymphocytes of healthy adults (n = 16) each expressed detectable levels of PDE isoforms 1A, 1B, 2A, 3A, 3B, 4A, 4B, 4C, 4D, 5A, 7A, 7B, 8A, 8B, and 9A. However, we discovered that CLL cells of each patient had significantly higher levels of PDE7B mRNA (2.8-fold to 368-fold) and significantly lower levels of PDE3B mRNA (5-fold to 138 fold) than did lymphocytes from healthy donors (n = 16). As such, the ratios of PDE7B/PDE3B in CLL cell samples were >3 (ranging from 3 to 1019), whereas normal lymphocytes had ratios of < 0.3 (ranging from 0.006 to 0.23). The mean PDE7B/PDE3B ratio for CLL cells (123.6 ± 45.0, S.D., n=24) was significantly higher than that for B-lymphocytes of normal donors (3.8 ± 1.1, n=10) (P<0.0001). Immunoblot analyses demonstrated that CLL cells uniformly expressed high levels of PDE7B and low levels of PDE3B relative to those of normal lymphocytes. Moreover, we found that PDE7B contributed predominantly to the total PDE activity in CLL cells but not in normal lymphocytes. We thus studied effect of a selective PDE7 inhibitor (BRL-50481) on CLL cells and normal lymphocytes in vitro and found that BRL-50481 dose-dependently promoted apoptosis of CLL cells, but not normal lymphocytes. Collectively these findings indicate that CLL B cells selectively over-express PDE7B and under-express PDE3B relative to normal lymphocytes or isolated blood B cells and suggest that selective inhibitors of PDE7B may be effective in the treatment of this disease.


Blood ◽  
1996 ◽  
Vol 88 (6) ◽  
pp. 2172-2182 ◽  
Author(s):  
F Mentz ◽  
MD Mossalayi ◽  
F Ouaaz ◽  
S Baudet ◽  
F Issaly ◽  
...  

We tested the effects of theophylline, a phosphodiesterase inhibitor inducing intracellular accumulation of cyclic adenosine monophosphate (cAMP), on malignant B cells from 15 patients with B-chronic lymphocytic leukemia (B-CLL). We observed a large increase in apoptotic cell numbers (mean, 90% v 20% in medium alone) in the presence of theophylline (100 micrograms/mL) or chlorambucil (10 mumol/L) after 72 hours of incubation. Maximal apoptosis (90%) was reached after 36 hours when the two drugs were used together at fourfold lower concentrations, indicating a synergistic effect; no effect was observed with normal B cells, suggesting that the combination might have therapeutic interest. Chlorambucil induced intracellular Ca+2 influx, pointing to the involvement of two signaling pathways that might explain its synergy with theophylline through their effects on oncogenes. The expression of bcl-2 protein, a proto-oncogene inhibiting apoptosis, decreased after incubation with the drugs, while c-myc, recently described as having a potent role in apoptosis, was overexpressed. For p53 we observed an overexpression in the presence of chlorambucil or both theophylline- chlorambucil and a decrease after theophylline incubation. Chlorambucil- and theophylline-induced apoptosis was partially inhibited by interleukin-4 (IL-4), which also abrogated the effects on oncogene expression. These results provide insight into the mechanisms underlying B-CLL apoptosis and suggest that the theophylline- chlorambucil combination may be of therapeutic value in this setting.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3149-3149
Author(s):  
Antonina Kurtova ◽  
Maite P. Quiroga ◽  
William G. Wierda ◽  
Michael Keating ◽  
Jan A. Burger

Abstract Contact between chronic lymphocytic leukemia (CLL) cells and accessory stromal cells in tissue microenvironments is considered to play a major role in regulating CLL cell survival and disease progression. Stromal cells of various origins and species, and variable stromal-CLL cell ratios have been used in the past to study CLL-stromal cell interactions and to assess cell-adhesion mediated drug resistance (CAM-DR). Because of the heterogeneity of the currently used in vitro systems to study CLL-MSC interactions, and the importance of these co-culture systems for development and testing of novel agents, we tested a panel of murine and human MSC lines for their capacities to support CLL cell survival and CAM-DR, using various CLL-MSC ratios and fludarabine (F-ara-A) to induce CLL cell apoptosis. We tested four murine, non-transformed MSC lines derived from bone marrow: M210B4, KUM4, ST-2 and KUSA-H1. Also, we tested three human transformed cell lines: Stroma-NKtert, derived from bone marrow and immortalized by human telomerase reverse transcriptase (hTERT), UE6E7-T2 derived from bone marrow and transformed with human papilloma viruses (HPV) E6, E7 and hTERT, and UCB408E6E7Tert33 derived from umbilical cord blood and transformed with hTERT and HPV E6, E7. CLL cells were isolated from peripheral blood of untreated patients and each cell line was tested with at least three different patients according to the following protocol: viability of CLL was tested after 24, 48 and 72 hours by flow cytometry after staining with DiOC6 and propidium iodide. The following conditions were assayed on each of the MSC lines: CLL cells in suspension culture, CLL cells in suspension culture with 10 mM F-ara-A, CLL cells in co-culture with MSC, and CLL cells in co-culture with MSC and with 10 mM F-ara-A. Firstly, we performed titration experiments in order to identify the most appropriate ratio between stromal and CLL cells, using CLL-MSC ratios of 5:1, 10:1, 20:1, 50:1 and 100:1. We found a decline in MSC-derived CLL cell protection at the highest ratio of 100:1, suggesting that ratios of 50:1 or lower provide optimal conditions for in vitro assays. Results shown in Table 1 were assayed using a 20:1 ratio and represented relative viabilities when compared to untreated controls (mean±SEM). Regarding the protective effect of different MSC, we found that all MSC lines demonstrated remarkable protection of CLL cells from spontaneous and F-ara-A-induced apoptosis. We also found that stromal cells that had round shape morphology and easily formed confluent monolayer (M210B4, KUSA-H1, Stroma-NKTert) showed more prolonged protective effect in comparison to cell lines with more spindle shaped morphology (ST-2, KUM4, UE6E7-T2). The failure of UE6E7-T2 and UCB408E6E7Tert33 to demonstrate long-term protection of CLL cells could be related to their own sensitivity to F-ara-A. In this comparative study we demonstrated that both murine and human MSC provide substantial and comparable levels of protection from spontaneous and drug-induced apoptosis. CLL:MSC ratios of 50:1 or lower can be considered ideal for co-culture experiments. Further experiments have to be done to determine the levels of MSC-derived protection in a larger series of CLL samples and in different laboratories for validation. Collectively, in these co-culture assays we can study CLL-MSC interactions and CLL drugs under more standardized conditions that may allow us to evaluate the efficacy of new treatments that target the CLL microenvironment. Time points 24 hours 48 hours 72 hours +Flu + MSC + MSC +Flu +Flu + MSC + MSC +Flu +Flu +MSC + MSC +Flu M210B4 85.2±2.4 117.2±5.0 110.5±4.9 30.8±12.6 138.1±9.5 113.0±2.2 5.2±3.1 138.1±5.1 120.4±3.4 ST-2 93.6±3.0 99.9±2.6 103.1±0.5 51.6±9.4 111.9±2.6 89.8±8.7 13.9±6.3 112.6±5.7 87.0±16.4 KUM-4 93.6±3.0 106.4±1.8 104.2±1.9 51.6±9.4 112.4±2.6 100.8±2.8 13.9±6.3 111.8±6.7 88.5±11.4 KUSA-H1 79.4±7.4 125.1±3.7 118.2±2.0 33.9±10.9 136.0±3.6 107.2±7.0 11.3±6.1 133.6±5.4 84.9±7.6 Stroma-NKTert 79.3±7.0 118.6±7.0 111.0±7.0 30.5±9.5 130.7±9.5 115.6±8.0 7.1±4.3 133.0±11.5 122.7±9.0 UE6E7-T2 79.3±7.0 113.4±3.9 109.3±3.0 30.5±9.5 118.4±4.8 85.0±7.1 7.1±4.3 119.2±6.9 51.0±10.1 UCB408 E6E7Tert33 81.5±7.2 120.2±5.4 111.8±2.7 36.7±9.4 123.7±6.3 86.7±7.7 8.5±6.7 119.7±6.1 50.8±13.0 Table 1. Flu: fludarabine (10mM/ml), MSC: marrow stromal cells


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3117-3117
Author(s):  
Alan G. Ramsay ◽  
Lena Svensson ◽  
Nancy Hogg ◽  
John G. Gribben

Abstract We have previously demonstrated that multiple gene expression abnormalities are induced in T cells from chronic lymphocytic leukemia (CLL) patients including defects within the actin cytoskeleton signaling pathways that control immune recognition and motility (Gullu et al. JCI, 2005). T cell immune surveillance requires rapid migratory responses and LFA-1 (CD11a/CD18; αLβ2) is a promigratory receptor that engages the cytoskeleton to control migration. We hypothesized that CLL T cells may exhibit dysfunctional migration in response to ICAM-1, the principal ligand for LFA-1. Using time lapse microscopy, we observed significantly reduced chemokine SDF-1 (CXCL12) induced migration on ICAM-1 of CLL CD4 and CD8 T cells compared to age-matched healthy donor T cells. Healthy T cells tracked for 45 min displayed a random course of migration with an average speed of ~ 8 μm/min, whereas CLL T cells were slower ~ 5 μm/min (n=14, ~ 30% reduction, p&lt;0.01). We further postulated that direct contact of CLL tumor cells with healthy T cells would induce this migratory defect. Healthy CD4 or CD8 T cells were cocultured with either allogeneic CLL B cells or allogeneic healthy B cells and subsequently used in migration assays. Co-culture with CLL cells resulted in significantly reduced T cell migration compared with co-culture with healthy B cells (~ 44% reduction in migration, n=6, p&lt;0.01). Evidence that direct contact was required to induce this migratory defect was shown when no effect was observed when cell-cell adhesion was prevented by pretreatment of CLL cells with anti-ICAM-1 blocking antibody prior to primary co-culture with healthy T cells. This cancer-induced migratory defect was repaired when CLL T cells were pretreated with the immunomodulatory drug Lenalidomide (1μM for 1hr). Treatment with this agent enhanced the migratory potential of CLL T cells to a speed comparable to untreated and treated healthy T cells. The finding that lenalidomide can restore rapid migration in patient T cells provides evidence that this agent may increase immune surveillance in CLL patients.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3658-3667 ◽  
Author(s):  
Jan A. Burger ◽  
Meike Burger ◽  
Thomas J. Kipps

Chemokines play a central role for lymphocyte trafficking and homing. The mechanisms that direct the tissue localization of B cells from patients with chronic lymphocytic leukemia (B-CLL) are unknown. We found that CLL B cells express functional CXCR4 receptors for the chemokine stromal cell-derived factor-1 (SDF-1), as demonstrated by receptor endocytosis, calcium mobilization, and actin polymerization assays. Moreover, CLL B cells displayed chemotaxis to this chemokine that could be inhibited by monoclonal antibodies (MoAbs) against CXCR4, pertussis toxin, or Wortmannin, a phosphatidylinositol 3-kinase inhibitor. That this chemotaxis may be involved in the homing of CLL cells is argued by studies in which CLL B cells were cocultured with a murine marrow stromal cell line that secretes SDF-1. Within 2 hours, CLL B cells spontaneously migrated beneath such stromal cells in vitro (pseudoemperipolesis). This migration could be inhibited by pretreatment of CLL B cells with anti-CXCR4 MoAbs, SDF-1, or pertussis-toxin. Furthermore, we noted strong downmodulation of CXCR4 on CLL B cells that migrated into the stromal cell layer. These findings demonstrate that the chemokine receptor CXCR4 on CLL B cells plays a critical role for heterotypic adherence to marrow stromal cells and provide a new mechanism to account for the marrow infiltration by neoplastic B cells.


Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. 156-164 ◽  
Author(s):  
Rong Chen ◽  
Lei Guo ◽  
Yuling Chen ◽  
Yingjun Jiang ◽  
William G. Wierda ◽  
...  

Abstract Homoharringtonine (HHT) is a plant alkaloid that inhibits the elongation phase of translation that is currently in clinical trials. Because the intrinsically short-lived antiapoptotic protein myeloid cell leukemia-1 (Mcl-1) has been reported to support the survival of chronic lymphocytic leukemia (CLL) cells, we hypothesized that inhibition of protein synthesis by HHT would decrease Mcl-1 expression and induce apoptosis in CLL. In primary CLL cells, HHT induced significant apoptosis independent of the prognostic characteristics of the patients. This was associated with inhibition of translation and decreased Mcl-1 levels in CLL cells. Mcl-1 reduction was evident as early as 2 hours and continued to decrease in the next 6-8 hours, whereas cell death started in 2 hours and continued to increase for 24 hours. Reduction of the Mcl-1 level was due to translation inhibition and proteasome degradation rather than to transcription inhibition or caspase cleavage. HHT and the transcription inhibitor SNS-032 induced synergistic cell killing. Although stromal cells induced Mcl-1 expression and protected CLL cells from the toxicity of fludarabine, this induction was reversed by HHT, which overcame stromal cell–mediated protection. Thus, these results provide a rationale for clinical development of HHT in CLL as single agent or in combinations.


Sign in / Sign up

Export Citation Format

Share Document