Enhanced Phosphatidylserine Scrambling in Oxidatively Challenged Red Blood Cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1718-1718
Author(s):  
Kitty DeJong ◽  
Frans A. Kuypers

Abstract Red blood cells (RBC) that abnormally expose phosphatidylserine (PS) contribute to the pathophysiology of several hemoglobinopathies. PS exposure requires inactivation of the flippase that transports PS from the outer to the inner membrane monolayer, and activation of a phospholipid scrambling process. To evaluate the role of increased oxidative stress in this process, we compared RBC from transgenic sickle mice (Berkeley type) with RBC from peroxiredoxin 2 (prdx) knock-out mice (prdx −/−). These mice lack one of the most prevalent cytosolic antioxidant molecules. This molecule, also known as calpromotin, was previously implicated in membrane abnormalities of the dense sickle RBC population. Mice that lack prdx are slightly anemic, have reduced RBC survival and exhibit a subpopulation of older highly oxidized RBC. The prdx −/− strain did not show a subpopulation of PS-exposing cells in freshly collected blood and the flippase activity, measured by transbilayer kinetics of the fluorescent probe NBD-PS, was normal. In contrast, blood collected from the sickle mice showed a large subpopulation with decreased flippase activity and exhibited a subpopulation of PS-exposing RBC that lack flippase activity. Flippase inhibition induced with vanadate or NEM did not increase the PS exposure of prdx −/− RBC incubated with high levels of Ca2+, indicating that there was no increased Ca2+ influx. In sickle cells, elevated intracellular Ca2+ was evident under similar loading conditions. Loading RBC with 0.1 mM Ca2+, but not lower concentrations, using Ca-ionophore resulted in bilayer scrambling and PS exposure in both strains as well as in normal control mice. The rate of PS scrambling was increased 1.5-fold in sickle mice compared to normal mouse RBC. While the scrambling rate was normal in the young, not oxidized prdx−/− RBC, it was increased 3-fold in the older highly oxidized prdx −/− RBC as compared to normal mouse RBC. The sulfhydryl modifiers NEM or PDA caused flippase inhibition, and altered the PS scrambling rate in normal mouse RBC as reported earlier. Both sickle cells and the older oxidized prdx −/− RBC showed a reduced susceptibility to NEM and PDA, while the younger prdx −/− RBC exhibited a normal sensitivity to these compounds. This suggests that both prdx −/− RBC and sickle cells have sustained similar sulfhydryl damage leading to enhanced scrambling. Exposure to three well-known oxidants (0.1–0.5 mM cumene hydroperoxide, tert-butyl hydroperoxide or hydrogen peroxide) did not increase the percentage of oxidized cells or PS exposure in prdx −/− RBC compared to normal RBC. This indicates that targeted sulfhydryl modification but not general short-term oxidative stress impacts the loss of phospholipid asymmetry. These data confirm that increased oxidative sulfhydryl damage results in a higher propensity for phospholipid scrambling. The presence of active prdx is important to maintain PS asymmetry as it prevents accelerated phospholipid scrambling. In those cells in which the flippase is also inactivated, PS exposure becomes apparent. The loss of flippase activity is much more prevalent in sickle RBC, indicating that prdx does not play an important role in protecting the flippase from inactivation. It can be expected that PS-exposing cells are rapidly removed from the circulation, as they resemble apoptotic cells, which may explain their absence in blood from prdx−/− mice. The presence of PS-exposing RBC in the circulation of sickle mice suggests that the formation of these cells overwhelms their removal.

Blood ◽  
1999 ◽  
Vol 93 (7) ◽  
pp. 2404-2410 ◽  
Author(s):  
Yiwen Zhu ◽  
Chris Paszty ◽  
Tikva Turetsky ◽  
Susan Tsai ◽  
Frans A. Kuypers ◽  
...  

To examine the relationship between erythrocyte membrane protein 7.2b deficiency and the hemolytic anemia of human hereditary stomatocytosis, we created 7.2b knock-out mice by standard gene targeting approaches. Immunoblots showed that homozygous knock-out mice completely lacked erythrocyte protein 7.2b. Despite the absence of protein 7.2b, there was no hemolytic anemia and mouse red blood cells (RBCs) were normal in morphology, cell indices, hydration status, monovalent cation content, and ability to translocate lipids. The absence of the phenotype of hereditary stomatocytosis implies that protein 7.2b deficiency plays no direct role in the etiology of this disorder and casts doubt on the previously proposed role of this protein as a mediator of cation transport in RBC.


Blood ◽  
1999 ◽  
Vol 93 (7) ◽  
pp. 2404-2410 ◽  
Author(s):  
Yiwen Zhu ◽  
Chris Paszty ◽  
Tikva Turetsky ◽  
Susan Tsai ◽  
Frans A. Kuypers ◽  
...  

Abstract To examine the relationship between erythrocyte membrane protein 7.2b deficiency and the hemolytic anemia of human hereditary stomatocytosis, we created 7.2b knock-out mice by standard gene targeting approaches. Immunoblots showed that homozygous knock-out mice completely lacked erythrocyte protein 7.2b. Despite the absence of protein 7.2b, there was no hemolytic anemia and mouse red blood cells (RBCs) were normal in morphology, cell indices, hydration status, monovalent cation content, and ability to translocate lipids. The absence of the phenotype of hereditary stomatocytosis implies that protein 7.2b deficiency plays no direct role in the etiology of this disorder and casts doubt on the previously proposed role of this protein as a mediator of cation transport in RBC.


2002 ◽  
Vol 368 (3) ◽  
pp. 761-768 ◽  
Author(s):  
Svenja MEIERJOHANN ◽  
Rolf D. WALTER ◽  
Sylke MÜLLER

Malaria is one of the most devastating tropical diseases despite the availability of numerous drugs acting against the protozoan parasite Plasmodium in its human host. However, the development of drug resistance renders most of the existing drugs useless. In the malaria parasite the tripeptide glutathione is not only involved in maintaining an adequate intracellular redox environment and protecting the cell against oxidative stress, but it has also been shown that it degrades non-polymerized ferriprotoporphyrin IX (FP IX) and is thus implicated in the development of chloroquine resistance. Glutathione levels in Plasmodium-infected red blood cells are regulated by glutathione synthesis, glutathione reduction and glutathione efflux. Therefore the effects of drugs that interfere with these metabolic processes were studied to establish possible differences in the regulation of the glutathione metabolism of a chloroquine-sensitive and a chloroquine-resistant strain of Plasmodiumfalciparum. Growth inhibition of P. falciparum 3D7 by d,l-buthionine-(S,R)sulphoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase (γ-GCS), and by Methylene Blue (MB), an inhibitor of gluta thione reductase (GR), was significantly more pronounced than inhibition of P.falciparum Dd2 growth by these drugs. These results correlate with the higher levels of total glutathione in P. falciparum Dd2. Short-term incubations of Percoll-enriched trophozoite-infected red blood cells in the presence of BSO, MB and N,N1-bis(2-chloroethyl)-N-nitrosourea and subsequent determinations of γ-GCS activities, GR activities and glutathione disulphide efflux revealed that maintenance of intracellular glutathione in P. falciparum Dd2 is mainly dependent on glutathione synthesis whereas in P. falciparum 3D7 it is regulated via GR. Generally, P. falciparum Dd2 appears to be able to sustain its intracellular glutathione more efficiently than P. falciparum 3D7. In agreement with these findings is the differential susceptibility to oxidative stress of both parasite strains elicited by the glucose/glucose oxidase system.


Author(s):  
Rodney C. Daniels ◽  
Hyesun Jun ◽  
Robertson D. Davenport ◽  
Maryanne M. Collinson ◽  
Kevin R. Ward

2014 ◽  
Vol 24 (4A) ◽  
pp. 118-131 ◽  
Author(s):  
Zivar Yousefipour ◽  
Chelsea Zhang ◽  
Mahdieh Monfareed ◽  
James Walker ◽  
Mohammad Newaz

2015 ◽  
Vol 67 (2) ◽  
pp. 535-545 ◽  
Author(s):  
Marko Prokic ◽  
Milica Paunovic ◽  
Milos Matic ◽  
Natasa Djordjevic ◽  
Branka Ognjanovic ◽  
...  

Aspartame (ASP) is one of the most widely used nonnutritive sweeteners. This study investigates the chronic effects of ASP on hematological and biochemical parameters, and its effects on the oxidative/antioxidative status in the red blood cells of Wistar albino rats. Rats were provided with ASP (40 mg/kg/daily for six weeks) in drinking water. Increased food and fluid intake was observed in the ASP-treated rats. Total body mass was significantly decreased in the ASP-treated rats. Treatment with ASP caused an increase in the concentrations of glucose, cholesterol, LDL-cholesterol, and in the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), as well as a decrease in the levels of HDL-cholesterol in the serum. A significant decline in the number of white blood cells (WBC) was observed after ASP uptake. Based on the results we conclude that ASP induces oxidative stress, observed as an alteration of the glutathione redox status, which leads to increased concentrations of nitric oxide (NO) and lipid peroxides (LPO) in the red blood cells. Changes in biochemical parameters, lipid metabolism, as well as changes in the levels of oxidative stress markers and the appearance of signs of liver damage indicate that chronic use of ASP can lead to the development of hyperglycemia, hypercholesterolemia and associated diseases.


2020 ◽  
Author(s):  
Rodney C Daniels ◽  
Hyesun Jun ◽  
Robertson D Davenport ◽  
Maryanne M Collinson ◽  
Kevin R Ward

Abstract Background Stored Red Blood Cells (RBCs) may undergo oxidative stress over time, with functional changes affecting critical tasks such as oxygen delivery. Central to these changes are oxidation-reduction (redox) reactions and the redox potential (RP) that must be maintained for proper cell function. RP imbalance can lead to oxidative stress that may contribute to storage lesions and transfusion-related morbidities. Direct measures of RP may allow for evaluation of erythrocyte quality and enable corrections of RP prior to transfusion. Methods Multiple random RBC segments were tested, ranging in age from 5 to 40 days at 5 day intervals. RP was recorded by measuring open circuit potential of RBCs using novel nanoporous gold electrodes with Ag/AgCl reference. RP measures were also performed on peripheral venous blood samples from 10 healthy volunteers. RP measures were compared between groups of aged RBCs, and with volunteer blood. Results Stored RBCs show time-dependent increases in RP. There were significant differences in Day 5 RP compared to all other groups (p≤0.005), Day 10-15 vs ages ≥ Day 20 (p≤0.025), Day 20-25 vs Day 40 (p=0.039), and all groups compared to healthy volunteers. RP became more positive over time suggesting ongoing oxidation as RBCs age. However, storage time alone does not predict the ultimate RP value measured from a given unit.Conclusions There are significant differences in RP between freshly stored RBCs and all others, with RP becoming more positive over time. However, storage time alone does not predict RP, indicating RP screening may be important independent of storage time and may serve as a marker of RBC quality and state of oxidative stress. RP measurements may also provide a target by which to restore RP balance in aged pRBCs, improving their clinical effectiveness while reducing associated morbidities.


Author(s):  
KRISHNA KUMAR ◽  
Nitish Kumar ◽  
Amresh gupta ◽  
Arpita singh ◽  
Pandey Swarnima ◽  
...  

Sickle cell anemia is a common disease in Oman country. In this disease, sickle-shaped cells are formed. These cells interrupt blood vessels and cause a reduction in oxygen transportation. It was founded that henna (Lawsonia inermis) can prohibit the formation of sickle cells. The Lawsone (2-Hydroxy-1,4-Naphthoquinone) is the constituents of henna which is responsible for the anti-sickling activity, by increasing the oxygen affinity of red blood cells. Hena has the anti-sickling activity which is proved by incubating aqueous and methanolic henna extracts with sickle cell disease patient's whole blood. Then for reduction to oxygen tension 2%, sodium bisulphite was added. Therefore, the percentage of sickled cells to normal red blood cells was observed at 30 minutes intervals. Henna proved a delay in the sickling process in 84% of the tested samples. Both extracts(aqueous and methanolic henna) can delay sickling for about an hour.


Blood ◽  
1949 ◽  
Vol 4 (5) ◽  
pp. 505-510 ◽  
Author(s):  
ROBERT S. FADEM

Abstract 1. A patient has been presented whose circulating red blood cells were composed of 65-84 per cent ovalocytes, 3-11 per cent sickled cells, and some normal appearing discoid cells. 2. The red blood cell counts and the blood indices were within normal limitations. 3. The red blood cells showed an increased resistance to hypotonic saline solutions. See PDF for Table See PDF for Table See PDF for Table 4. The peripheral blood showed a daily variation in the percentage of circulating ovalocytes, from 65 per cent to 84 per cent, and in the percentage of circulating sickle cells, from 3 per cent to 11 per cent. 5. After 72 hours in fresh wet preparations the per cent of ovalocytes remained essentially unchanged from that of fresh fixed blood. 6. The percentage of sickled cells was found to be increased after 18, 24, and 72 hours in fresh wet preparations as compared to the percentage of sickled cells found in fresh fixed preparations. 7. Some of the normal appearing discoid red blood cells were observed to sickle in fresh wet preparations within 18 hours.


Sign in / Sign up

Export Citation Format

Share Document