scholarly journals Blocking endothelial protein C receptor (EPCR) accelerates thrombus development in vivo

2010 ◽  
Vol 103 (06) ◽  
pp. 1239-1244 ◽  
Author(s):  
Miguel Centelles ◽  
Cristina Puy ◽  
Jacinto Lopez-Sagaseta ◽  
Kenji Fukudome ◽  
Ramón Montes ◽  
...  

SummaryThe endothelial protein C receptor (EPCR) plays an anticoagulant role by improving protein C activation. Although low levels of activated protein C (APC) constitute a thrombosis risk factor, the relationship between modulating EPCR function and thrombosis has not been addressed so far. Monoclonal antibodies (mAb) against murine EPCR were raised, and their ability to block protein C/APC binding was tested. The ferric chloride carotid artery injury model in mice was chosen to test the effect of anti-EPCR mAb on thrombus formation. The time to total occlusion of the vessel was analysed in three groups, given an isotype control mAb (IC), a blocking (RCR-16) or a non-blocking (RCR-20) anti-EPCR mAb. RCR-16 prevented the interaction between protein C/APC and EPCR as demonstrated by surface plasmon resonance and flow cytometry, and inhibited the activation of protein C on the endothelium. IC and RCR-20 were unable to induce such effects. In vivo, RCR-16 shortened the time to total vessel occlusion with respect to IC [13.4 ± 1.0 (mean ± SD) and 17.8 ± 3.2 minutes, respectively, p<0.001]. Occlusive thrombi lasting for more than one hour were observed in all RCR-16-treated animals, but only in 43% of IC-treated ones. Results with RCR-20 were indistinguishable from those observed with IC. For the first time, a direct relationship between blocking EPCR and thrombosis is demonstrated. Blocking anti-EPCR autoantibodies can predispose to thrombosis episodes and may constitute a new therapeutic target.

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sanjana Dayal ◽  
Sean X Gu ◽  
Katinan M Wilson ◽  
Ryan Hutchins ◽  
Steven R Lentz

In vitro studies have suggested that reactive oxygen species such as superoxide can produce prothrombotic effects, including enhanced platelet activation, increased tissue factor (TF) expression, and an oxidative modification in thrombomodulin impairing its capacity to enhance the generation of activated protein C (APC) by thrombin. It is not known, however, if elevated levels of superoxide accelerate susceptibility to experimental thrombosis in vivo . We used mice genetically deficient in superoxide dismutase-1 (SOD1, an antioxidant enzyme that dismutates superoxide to hydrogen peroxide), to test the hypothesis that lack of SOD1 enhances susceptibility to thrombosis. Susceptibility to carotid artery thrombosis in a photochemical injury model demonstrated that Sod1-/- mice formed stable occlusions significantly faster than Sod1+/+ mice (P<0.05). In an inferior vena cava (IVC) stasis model Sod1- /- mice developed significantly larger thrombi 48 hours after IVC ligation (P<0.05 vs. Sod1+/+ mice). After activation with thrombin (0.5 U/ml) or convulxin (200 ng/ml), no differences in surface expression of P-selectin or binding of fibrinogen were observed between platelets from Sod1-/- and Sod1+/+ mice. The expression of TF mRNA in lung measured by real time qPCR showed similar levels in Sod1-/- and Sod1 +/+ mice. However, the activation of exogenous protein C by thrombin in lung homogenates was decreased in Sod1 -/- mice (P<0.05 vs. Sod1 +/+ mice). Further, in vivo generation of activated protein C in response to thrombin (40 U/Kg) infusion was significantly lower in Sod1-/- mice (P<0.05 vs. Sod1+/+ mice). No differences in mRNA levels for thrombomodulin or endothelial protein C receptor were detected in Sod1 -/- mice vs. Sod1 +/+ mice, suggesting that altered generation of activated protein C in Sod1-/- mice may be related to a direct oxidative effect on thrombomodulin. In accordance, thrombomodulin treated with xanthine/hypoxanthine showed 40% loss of ability to activate protein C that was overcome by addition of SOD and catalase (P<0.05). We conclude that endogenous SOD1 in mice protects from impaired generation of activated protein C and accelerated thrombosis.


Rheumatology ◽  
2019 ◽  
Vol 58 (10) ◽  
pp. 1850-1860 ◽  
Author(s):  
Meilang Xue ◽  
Suat Dervish ◽  
Kelly J McKelvey ◽  
Lyn March ◽  
Fang Wang ◽  
...  

Abstract Objectives To investigate whether activated protein C (APC), a physiological anticoagulant can inhibit the inflammatory/invasive properties of immune cells and rheumatoid arthritis synovial fibroblasts (RASFs) in vitro and prevent inflammatory arthritis in murine antigen-induced arthritis (AIA) and CIA models. Methods RASFs isolated from synovial tissues of patients with RA, human peripheral blood mononuclear cells (PBMCs) and mouse thymus cells were treated with APC or TNF-α/IL-17 and the following assays were performed: RASF proliferation and invasion by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell invasion assays, respectively; cytokines and signalling molecules using ELISA or western blot; Th1 and Th17 phenotypes in human PBMCs or mouse thymus cells by flow cytometry. The in vivo effect of APC was evaluated in AIA and CIA models. Results In vitro, APC inhibited IL-1β, IL-17 and TNF-α production, IL-17-stimulated cell proliferation and invasion and p21 and nuclear factor κB activation in RASFs. In mouse thymus cells and human PBMCs, APC suppressed Th1 and Th17 phenotypes. In vivo, APC inhibited pannus formation, cartilage destruction and arthritis incidence/severity in both CIA and AIA models. In CIA, serum levels of IL-1β, IL-6, IL-17, TNF-α and soluble endothelial protein C receptor were significantly reduced by APC treatment. Blocking endothelial protein C receptor, the specific receptor for APC, abolished the early or preventative effect of APC in AIA. Conclusion APC prevents the onset and development of arthritis in CIA and AIA models via suppressing inflammation, Th1/Th17 phenotypes and RASF invasion, which is likely mediated via endothelial protein C receptor.


2012 ◽  
Vol 107 (03) ◽  
pp. 448-457 ◽  
Author(s):  
Pilar Medina ◽  
Elena Bonet ◽  
Silvia Navarro ◽  
Laura Martos ◽  
Amparo Estellés ◽  
...  

SummaryOral anticoagulants (OACs) reduce activated protein C (APC) plasma levels less than those of protein C (PC) in lupus erythematosus and cardiac patients. Carriers of the H1 haplotype of the endothelial PC receptor gene (PROCR) have higher APC levels than non-carriers. We aimed to confirm these results in a large group of patients treated with OACs because of venous thromboembolism (VTE) and to assess whether the effect is influenced by the PROCR H1 haplotype. We evaluated APC, PC, and factor (F)II levels in 502 VTE patients (158 with and 344 without OACs) and in 322 healthy individuals. Mean APC, PC and FII levels were significantly lower in OAC patients than in patients not taking OACs. During anticoagulant therapy, the FII/PC ratios were independent of the PC values, whereas APC/FII and APC/PC ratios significantly increased when FII and PC levels decreased. Of the 22 OAC patients carrying the H1H1genotype, 11 (50%) showed APC/PCag ≥2.0 and 10 (45%) APC/ FIIag ratios ≥2.0, whereas for the 49 OAC patients non-carrying the H1 haplotype these figures were 6 (12%) and 4 (8%), respectively (p<0.001). Barium citrate adsorption of plasma from OAC patients showed that most of the circulating free and complexed APC, but only part of PCag, is fully carboxylated. In conclusion, during anticoagulant therapy VT patients have APC levels disproportionately higher than the corresponding PC levels, mainly due to the presence of the PROCR H1 haplotype. Furthermore, a sufficiently carboxylated PC Gla-domain seems to be essential for PC activation in vivo.


Blood ◽  
2011 ◽  
Vol 117 (15) ◽  
pp. 4125-4133 ◽  
Author(s):  
Felicity N. E. Gavins ◽  
Janice Russell ◽  
Elena L. Senchenkova ◽  
Lidiana De Almeida Paula ◽  
Amílcar S. Damazo ◽  
...  

Abstract The microvasculature assumes an inflammatory and procoagulant state in a variety of different diseases, including sickle cell disease (SCD), which may contribute to the high incidence of ischemic stroke in these patients. This study provides evidence for accelerated thrombus formation in arterioles and venules in the cerebral vasculature of mice that express hemoglobin-S (βs mice). Enhanced microvascular thrombosis in βs mice was blunted by immunologic or genetic interventions that target tissue factor, endothelial protein C receptor, activated protein C, or thrombin. Platelets from βs mice also exhibited enhanced aggregation velocity after stimulation with thrombin but not ADP. Neutropenia also protected against the enhanced thrombosis response in βs mice. These results indicate that the cerebral microvasculature is rendered vulnerable to thrombus formation in βs mice via a neutrophil-dependent mechanism that is associated with an increased formation of and enhanced platelet sensitivity to thrombin.


Blood ◽  
2009 ◽  
Vol 113 (23) ◽  
pp. 5970-5978 ◽  
Author(s):  
Laurent O. Mosnier ◽  
Antonella Zampolli ◽  
Edward J. Kerschen ◽  
Reto A. Schuepbach ◽  
Yajnavalka Banerjee ◽  
...  

Abstract Activated protein C (APC) reduces mortality in severe sepsis patients. APC exerts anticoagulant activities via inactivation of factors Va and VIIIa and cytoprotective activities via endothelial protein C receptor and protease-activated receptor-1. APC mutants with selectively altered and opposite activity profiles, that is, greatly reduced anticoagulant activity or greatly reduced cytoprotective activities, are compared here. Glu149Ala-APC exhibited enhanced in vitro anticoagulant and in vivo antithrombotic activity, but greatly diminished in vitro cytoprotective effects and in vivo reduction of endotoxin-induced murine mortality. Thus, residue Glu149 and the C-terminal region of APC's light chain are identified as functionally important for expression of multiple APC activities. In contrast to Glu149Ala-APC, 5A-APC (Lys191-193Ala + Arg229/230Ala) with protease domain mutations lacked in vivo antithrombotic activity, although it was potent in reducing endotoxin-induced mortality, as previously shown. These data imply that APC molecular species with potent antithrombotic activity, but without robust cytoprotective activity, are not sufficient to reduce mortality in endotoxemia, emphasizing the need for APC's cytoprotective actions, but not anticoagulant actions, to reduce endotoxin-induced mortality. Protein engineering can provide APC mutants that permit definitive mechanism of action studies for APC's multiple activities, and may also provide safer and more effective second-generation APC mutants with reduced bleeding risk.


Blood ◽  
1989 ◽  
Vol 73 (3) ◽  
pp. 639-642 ◽  
Author(s):  
A Gruber ◽  
JH Griffin ◽  
LA Harker ◽  
SR Hanson

The in vivo antithrombotic properties of human plasma activated protein C (APC), a natural anticoagulant enzyme, were investigated in a baboon model of thrombus formation on prosthetic vascular grafts. Infusion of 0.25 to 1.1 mg/kg/h purified, human, APC inhibited blood clotting, as measured by the activated partial thromboplastin time (APTT), and reduced vascular graft platelet deposition by 40% to 70%, as determined by the real-time scintillation camera imaging of 111In-labeled platelet deposition. APC infusion also preserved graft patency. Hemostatic plug formation remained normal, as measured by the template bleeding times. These results suggest that APC administration may produce immediate antithrombotic effects under arterial flow conditions.


2015 ◽  
Vol 114 (12) ◽  
pp. 1144-1155 ◽  
Author(s):  
Eveline A. M. Bouwens ◽  
Fabian Stavenuiter ◽  
Laurent O. Mosnier

SummaryThe protein C (PC) system conveys beneficial anticoagulant and cytoprotective effects in numerous in vivo disease models. The endothelial protein C receptor (EPCR) plays a central role in these pathways as cofactor for PC activation and by enhancing activated protein C (APC)-mediated protease-activated receptor (PAR) activation. During inflammatory disease, expression of EPCR on cell membranes is often diminished thereby limiting PC activation and APC’s effects on cells. Here a caveolae-targeting glycosylphosphatidylinositol (GPI)-anchored EPCR (EPCR-GPI) was engineered to restore EPCR’s bioavailability via “cell painting.” The painting efficiency of EPCR-GPI on EPCR-depleted endothelial cells was time- and dose-dependent. The EPCR-GPI bioavailability after painting was long lasting since EPCR surface levels reached 400 % of wild-type cells after 2 hours and remained > 200 % for 24 hours. EPCR-GPI painting conveyed APC binding to EPCR-depleted endothelial cells where EPCR was lost due to shedding or shRNA. EPCR painting normalised PC activation on EPCR-depleted cells indicating that EPCR-GPI is functional active on painted cells. Caveolin-1 lipid rafts were enriched in EPCR after painting due to the GPI-anchor targeting caveolae. Accordingly, EPCR painting supported PAR1 and PAR3 cleavage by APC and augmented PAR1-dependent Akt phosphorylation by APC. Thus, EPCR-GPI painting achieved physiological relevant surface levels on endothelial cells, restored APC binding to EPCR-depleted cells, supported PC activation, and enhanced APC-mediated PAR cleavage and cytoprotective signalling. Therefore, EPCRGPI provides a novel tool to restore the bioavailability and functionality of EPCR on EPCR- depleted and -deficient cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3629-3629
Author(s):  
Juliana Small ◽  
Shannon Zintner ◽  
Lynn E Dankner ◽  
Paris Margaritis

The endothelial protein C receptor (EPCR) has been demonstrated to bind activated FVII (FVIIa) through the Gla domain with equal affinity to Protein C (PC). Mouse studies suggest that EPCR is involved in the extravasation of infused human FVIIa, leading to an extended extravascular tissue persistence, longer than expected based on its circulating half-life. This provides a plausible explanation for the long-term benefits of hemophilic patients on human FVIIa prophylaxis. Collectively, these data suggest that EPCR sequesters administered FVIIa in tissues where it may have a hemostatic effect. However, the role of the endogenous FVII-EPCR interaction in normal conditions is largely unknown. For this, we have developed a mouse model to better understand this interaction in vivo. Endogenous mouse FVII and FVIIa (mFVII/FVIIa) do not bind mouse EPCR. However, our laboratory has demonstrated that L4F, L8M, and T9R substitutions in the Gla domain of mFVIIa enable its interaction with mouse EPCR while retaining full enzymatic activity in vitro. Based on that data, we utilized CRISPR/Cas9 technology to knock-in L4F, L8M, and T9R into the mFVII Gla domain in the mouse F7 locus (F7FMR), thereby developing mice with a chimeric endogenous FVII capable of binding EPCR. Founder animals were generated and capable of producing offspring, indicating that the gain-of-function in mFVII was compatible with life. Animals were subsequently backcrossed to wildtype C57BL/6 mice in order to remove potential off-target effects of the CRISPR/Cas9. Resultant heterozygous animals (F7FMR/WT) from the final cross were bred to generate F7FMR/FMR, F7FMR/WT, and F7WT/WTlittermates. We generated 59 male and 52 female animals and a binomial distribution test demonstrated that sex is equally distributed in the population. Moreover, the genotypes expected from the heterozygous crosses were inherited in a 1:2:1 ratio, further indicating that the gain-of-function in FVII is not lethal during development. As additional metrics of health, we measured weight longitudinally during weeks 1-10 of life and found no differences between the three genotypes for either gender. Complete blood counts (CBCs) revealed no differences between the F7FMR/FMR, F7FMR/WT, and F7WT/WTgenotypes, with the exception of a mild elevation in F7FMR/WTanimals compared to animals with wildtype FVII. Collectively, we found that the gain-of-function in EPCR binding by endogenous FVII is not detrimental to the overall health of the mice. Subsequently, we determined the mFVII levels in the F7FMR/FMR, F7FMR/WT, and F7WT/WTanimals using an in-house ELISA. We observed that plasmatic mFVII levels were dependent on the EPCR-binding capacity of the endogenous mFVII. Specifically, F7WT/WTmice, whose mFVII does not bind EPCR, had a plasmatic mFVII concentration of ~690 ng/ml. In contrast, F7FMR/FMRhomozygote mice had ~350 ng/ml of mouse FVII, approximately half the plasma levels of the F7WT/WT. Heterozygote animals F7FMR/WThad an intermediate plasmatic mFVII level (~550 ng/ml), suggesting that EPCR may regulate plasmatic FVII levels in vivo. Lastly, we determined the hemostatic response to injury in the F7FMR/FMR, F7FMR/WT, and F7WT/WTanimals. We did this in two ways, by measuring blood loss following tail clip assay and by determining time to vessel occlusion following ferric chloride injury of the carotid artery. We observed no differences between the three genotypes in response to either injury model. In conclusion, we have generated and characterized a novel mouse model in which endogenous FVII is capable of binding EPCR. Using this model, we demonstrated that EPCR can modulate plasmatic FVII levels in vivo but does not appear to affect hemostasis. Since this model mimics the FVII-EPCR interaction in humans, it can now be used to further investigate how this interaction participates in other normal or pathologic states that depend on FVII and/or EPCR. Disclosures Margaritis: Bayer Hemophilia Awards: Research Funding; Bristol-Myers Squibb: Other: Salary (spouse); CSL Behring: Other: Salary (spouse); NovoNordisk A/S: Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 267-267
Author(s):  
Matthew J. Flick ◽  
Anil K. Chauhan ◽  
Sara Welch ◽  
Maureen A. Shaw ◽  
Kathryn E. Talmage ◽  
...  

Abstract Thrombin is central in thrombus formation as both a positive mediator of thrombus formation through the proteolytic activation of PARs, fibrinogen, fXI and other prothrombotic substrates, and a negative modulator of the coagulation cascade through the activation of protein C. Detailed structure-function studies have revealed that thrombin can be redesigned to favor either procoagulant or anticoagulant substrates. The introduction of W215A/E217A substitutions in the murine thrombin active site (fIIWE) results in a pronounced “specificity switch” that reduces catalytic efficiency with fibrinogen by at least 3-orders-magnitude while only modestly reducing activity for protein C activation. To evaluate the effects of fIIWE activity in vivo, we have used a gene-targeting strategy to generate mice carrying the W215A/E217A mutations in the endogenous murine prothrombin gene. The mutant allele was transmitted through the germline and was found to support the expression of normal levels of hepatic fII mRNA and plasma fII in both heterozygous and homozygous neonates. Unlike fII knockout mice, homozygous fIIWE mice were observed at term with the expected Mendelian frequency. Nevertheless, homozygous fIIWE offspring uniformly succumbed to spontaneous bleeding events within days of birth. Heterozygous fIIWE/WT animals generally survived to adulthood, were capable of carrying multiple liters to term, and unchallenged mice displayed a hematological profile similar to wildtype mice. However, consistent with a predicted anticoagulant phenotype, adult fIIWE/WT heterozygotes exhibited significantly delayed thrombus formation following ferric chloride injury of mesenteric arterioles and extended bleeding times following tail tip excision relative to control mice expressing wildtype fII. Given that activated protein C has been shown to be efficacious in the treatment of sepsis, we explored whether the shift in thrombin specificity in heterozygous fIIWE/WT mice would confer the benefit of rendering animals tolerant to acute septic challenges. Kaplan-Meier analyses following intravenous administration of S. aureus revealed that fIIWE/WT mice exhibited a significant survival advantage over littermate wildtype animals challenged in parallel and tracked over a 7-day observation period. Notably, extended thrombus formation and bleeding times as well as resistance to sepsis was not simply a function of half normal wildtype fII expression. When these analyses were performed in animals carrying one wildtype allele and one null mutation allele, results were similar to wiltype. These studies further underscore the interplay between the hemostatic and inflammatory systems in vivo and highlight the possible therapeutic utility of recombinant (pro)thrombin derivatives with selected alterations in substrate specificity.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 874-883 ◽  
Author(s):  
Thati Madhusudhan ◽  
Hongjie Wang ◽  
Beate K. Straub ◽  
Elisabeth Gröne ◽  
Qianxing Zhou ◽  
...  

Abstract The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPCinduced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document