Differentiation Hotspots on a Cell Cycle Related Continuum.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3703-3703
Author(s):  
Gerald A. Colvin ◽  
David Berz ◽  
Mark S. Dooner ◽  
Gerri J. Dooner ◽  
Kevin Johnson ◽  
...  

Abstract Directed differentiation is defined as the ability to program a stem cell at the most primitive level while it still has its reproductive and full proliferative potential. This is in contrast to ex-vivo expansion where the stem cells are forced into specific lineage commitments, limiting the overall therapeutic utility. We have demonstrated differentiation “hotspots” on a cell cycle continuum (Exp Heme35:96, 2007). In this work we showed marked but reversible increases in differentiation potential to megakryocyte and granulocytes at different phases of a single cytokine induced cell cycle passage of highly purified quiescent murine lineagenegative rhodaminelowHoeschtlow (LRH) marrow stem cells. We have reproducibly induced directed stem cell differentiation by capitalizing on inherent changes in sensitivities to inductive cytokine signals in the context of cell cycle position. These cells, when exposed to thrombopoietin, FLT3-ligand and steel factor, synchronously pass through cell cycle. We have found that using a differentiation cytokine cocktail of G-CSF at 0.075ng/ml, GM-CSF at 0.0375ng/ml and steel factor at 50ng/ml, we were able to see enhanced megakaryopoiesis occurring 14-days after culture in those LRH stem cells that were in early to mid S-phase at time of inductive signaling. We have now shown that a megakaryocyte hotspot clusters around 32 hours; the G1/S interface, and that dramatic reversible changes in differentiation potential occur over one hour time intervals. We have confirmed this data by looking at LRH cells through cell cycle transit after initial cell division showing that a megakaryocyte hotspot occurs in two sequential cell cycles and still tied to S-phase at time of inductive signaling of the daughter cells. This hotspot has been demonstrated on a clonal basis, although the kinetics of the hotspot shifts when clonal as opposed to population studies are carried out. An important issue is whether in vitro cytokine exposure, separate from cell cycle status, determines the existence of the hotspot. To address this, we used Hoechst 33342 dye content to assist in separation of different cell cycle fractions (G0–1, early, mid and late components of S, G2/M) of lineage negative Sca-1+ stem cells, a cycling stem/progenitor cell population in which approximately 20% of the cells are in S-phase at isolation. These cells were only exposed to the differentiation cytokines and showed a megakaryocyte hotspot present in only early S-phase cells after 14-days of culture, showing that in vitro cell cycle phase determined the presence of the hotspot, separate from cytokine exposure. These data indicate that differentiation potential of marrow stem cells exists on a cell cycle related continuum and that this potential can be demonstrated on a single cell basis. This suggests a continuum model of stem cell regulation at the stem cell level as opposed to a pure hierarchical model.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4776-4776
Author(s):  
Gerald A. Colvin ◽  
Liansheng Liu ◽  
Mark Dooner ◽  
Gerri Dooner ◽  
Kevin Johnson ◽  
...  

Abstract Directed differentiation is defined as the ability to program a stem cell at the most primitive level while it still has its reproductive and full proliferative potential in contrast to ex-vivo expansion where the stem cells are forced into specific lineage commitments, limiting the overall therapeutic utility. Standard hierarchical models of hematopoiesis suppose an ordered system in which stem cells and progenitors with specific fixed differentiation potentials exist. We show here that the potential of marrow stem cells to differentiate changes reversibly with cytokine-induced cell cycle transit. This along with other data strongly suggest that stem cell regulation is not based on the classic hierarchical model, but instead more on a functional continuum and believe that sensitivity to cytokines change as a stem/progenitor cells goes through cell cycle transit. We previously have shown that stem cells reversibly shift their engraftment phenotype with cytokine induced cell cycle transit. Further work has shown that adhesion protein, cytokine receptor, gene expression and progenitor phenotypes also shift. Evolving data indicate the phenotype of murine marrow stem cells reversible change with cell cycle transit. Murine experiments have been performed on highly purified quiescent G0–1 lineagenegativerhodaminelowHoeschtlow (LRH) marrow stem cells. When exposed to thrombopoietin, FLT3-ligand and steel factor, they synchronously pass through cell cycle as measured by propidium iodide, cell doublings and tritiated thymidine. LRH cells enter S-phase in a synchronized fashion by 18 hours, leave S-phase at 40–42 hours and divide between 44–48 hours. The capacity of these cells to respond to a differentiation inductive signal (granulocyte colony-stimulating factor, granulocyte-macrophage colony stimulating factor and steel factor) is altered at different points in cell cycle. We have demonstrated differentiation hotspots on a cell cycle continuum (Exp Heme35:96, 2007). In this work we showed marked but reversible increases in differentiation potential to megakryocyte and granulocytes at different phases of a single cytokine induced cell cycle passage of highly purified quiescent murine LRH marrow stem cells. We have reproducibly induced directed stem cell differentiation by capitalizing on inherent changes in sensitivities to inductive cytokine signals in the context of cell cycle position. We have found that using a differentiation cytokine cocktail of G-CSF at 0.075ng/ml, GM-CSF at 0.0375ng/ml and steel factor at 50ng/ml, we were able to see enhanced megakaryopoiesis occurring 14-days after culture in those LRH stem cells that were in early to mid S-phase at time of inductive signaling. We have now shown that a megakaryocyte hotspot clusters around giving an inductive signal after 32-hours in primary culture; the G1/S interface, and that dramatic reversible changes in differentiation potential occur over half hour time intervals. We have confirmed this data by looking at LRH cells through cell cycle transit after initial cell division showing that a megakaryocyte hotspot occurs in two sequential cell cycles and still tied to S-phase at time of inductive signaling of the daughter cells. This hotspot has been demonstrated on a clonal basis, although the kinetics of the hotspot shifts when clonal as opposed to population studies are carried out. An important issue is whether in vitro cytokine exposure, separate from cell cycle status, determines the existence of the hotspot. To address this, we used Hoechst 33342 dye content to assist in separation of different cell cycle fractions (G0–1, early, mid and late components of S, G2/M) of lineage negative Sca-1+ stem cells, a cycling stem/progenitor cell population in which approximately 20% of the cells are in S-phase at isolation. These cells were only exposed to the differentiation cytokines and showed a megakaryocyte hotspot present in only early S-phase cells after 14-days of culture, showing that in vitro cell cycle phase determined the presence of the hotspot, separate from cytokine exposure. These data indicate that differentiation potential of marrow stem cells exists on a cell cycle related continuum and that this potential can be demonstrated on a single cell basis. Stem cell differentiation hotspots may eventually be utilized to alter repopulation kinetics after bone marrow transplantation improving recovery time of platelets and neutrophils, translating into improved outcomes.


Author(s):  
Peng Cui ◽  
Ping Zhang ◽  
Lin Yuan ◽  
Li Wang ◽  
Xin Guo ◽  
...  

Hypoxia-inducible factor 1α (HIF-1α) plays pivotal roles in maintaining pluripotency, and the developmental potential of pluripotent stem cells (PSCs). However, the mechanisms underlying HIF-1α regulation of neural stem cell (NSC) differentiation of human induced pluripotent stem cells (hiPSCs) remains unclear. In this study, we demonstrated that HIF-1α knockdown significantly inhibits the pluripotency and self-renewal potential of hiPSCs. We further uncovered that the disruption of HIF-1α promotes the NSC differentiation and development potential in vitro and in vivo. Mechanistically, HIF-1α knockdown significantly enhances mitofusin2 (MFN2)-mediated Wnt/β-catenin signaling, and excessive mitochondrial fusion could also promote the NSC differentiation potential of hiPSCs via activating the β-catenin signaling. Additionally, MFN2 significantly reverses the effects of HIF-1α overexpression on the NSC differentiation potential and β-catenin activity of hiPSCs. Furthermore, Wnt/β-catenin signaling inhibition could also reverse the effects of HIF-1α knockdown on the NSC differentiation potential of hiPSCs. This study provided a novel strategy for improving the directed differentiation efficiency of functional NSCs. These findings are important for the development of potential clinical interventions for neurological diseases caused by metabolic disorders.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4194-4194
Author(s):  
Toska J. Zomorodian ◽  
Mehrdad Abedi ◽  
Gerri Dooner ◽  
Debbie Greer ◽  
Kevin Johnson ◽  
...  

Abstract Hierarchical models of hematopoiesis suppose an ordered system in which stem cells and progenitors with specific fixed differentiation potentials exist. We show that the potential of marrow stem cells to differentiate changes reversibly with cytokine-induced cell cycle transit. To address whether the cell cycle plays a role in the differentiation of stem cells, we co-cultured murine bone marrow Lin- Sca-1+ cells, at different points in their cycle, with the OP9-DL1 system. OP9-DL1 stromal cell layer has been transduced to allow T-cell differentiation in culture. We first induced cell cycle synchrony by exposing the isolated cells to a cytokine cocktail of TPO, Flt-3 and Stem Cell Factor. The cells were exposed to this primary culture for 0, 6, 24, 32 and 40 hours and were subsequently cultured on an OP9-DL1 stromal cell layer grown in 6-well plates. Cells were co-cultured for 8 days and 21 days, in the presence of IL-7 and Flt-3. Cultured cells were evaluated for CD4, CD8, B220, CD19, NK1.1, and Mac-1 surface markers, using flow cytometry. On Day 8, we found a significant hotspot at 32-hours (early-S phase) for B220+ cells (34.3 %), while Mac-1 positive cells demonstrated a 24-hour hotspot (18.1 %). As expected, terminal T and B-cell differentiation (CD 4, CD8, and CD19) was undetectable at 8 days. Three separate short-term (8 day) experiments have confirmed these data. Cells in culture for 21 days similarly show variation in differentiation outcome. CD4 cells demonstrate a peak at the 40 hour time point (mid-S phase) (69.9%), while CD8 positive cells were significantly increased at the 32 hour time point (34.4%). These data indicate both B and T cells show reversible differentiation fluxes linked to cell cycle. This work supports previous evidence that marrow hematopoiesis at the stem cell level is regulated on a continuum and that stem cells have reversible, cycle-related differentiation capacity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4187-4187
Author(s):  
Gerald A. Colvin ◽  
Gerri J. Dooner ◽  
Mark S. Dooner ◽  
Jason Aliotta ◽  
Galatia Politopoulou ◽  
...  

Abstract Directed differentiation is defined as the ability to program a stem cell at the most primitive level while it still has its reproductive and full proliferative potential. This is in contrast to ex-vivo expansion where the stem cells are forced into specific lineage commitments, limiting the overall therapeutic utility. We have reproducibly induced directed stem cell differentiation towards megakaryopoiesis by capitalizing on inherent changes in sensitivities to inductive cytokine signals in the context of cell cycle position. Murine experiments have been performed on highly purified quiescent G0–1 lineagenegative rhodaminelowHoeschtlow (LRH) marrow stem cells. When exposed to thrombopoietin, FLT3-ligand and steel factor (TFS), they synchronously pass through cell cycle. Megakaryopoiesis is focused at early to mid S-phase, returning to baseline before initial cell division. Population based differentiation cultures after 14-days produced up to 49% megakaryocytes with stem cells sub-cultured during early-mid S-phase with little to no production with colonies cultured from stem cells in G0–1 or G2 phase at time directed differentiation signaling. Gene expression showed over 2 fold increases in FOG, Nfe2 and Fli1. Clonal studies confirm the results. In one experiment, 33% of clonally derived colonies that grew from early-S phase cells and 10% of colonies that grew from mid-S phase cells had megakaryocytes present compared with 0% for G0–1 and G2 cells. We have now worked with human lineagenegative double-effluxed-rhodaminelow double-effluxed-Hoeschtlow G0–1 stem cells. When expose to TFS cytokines, there initial cell cycle lasts more than 80 hours opposed to CD34+ cells and murine LRH cells which have divided by 44–48 hours. This human population of stem cells comprises approximately 0.01% of CD34+ cells and has tremendous promise in replicating our murine work, elucidating opportunities for human translational work targeting patients that have a block of differentiation toward megakaryopoiesis i.e. sub-sets of autologous transplant or myelodysplastic syndrome patients.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1918
Author(s):  
Young-Bum Son ◽  
Yeon Ik Jeong ◽  
Yeon Woo Jeong ◽  
Mohammad Shamim Hossein ◽  
Per Olof Olsson ◽  
...  

Mesenchymal stem cells (MSCs) are promising multipotent cells with applications for cartilage tissue regeneration in stem cell-based therapies. In cartilage regeneration, both bone marrow (BM-MSCs) and synovial fluid (SF-MSCs) are valuable sources. However, the cellular characteristics and chondrocyte differentiation potential were not reported in either of the camel stem cells. The in vitro chondrocyte differentiation competence of MSCs, from (BM and SF) sources of the same Camelus dromedaries (camel) donor, was determined. Both MSCs were evaluated on pluripotent markers and proliferation capacity. After passage three, both MSCs showed fibroblast-like morphology. The proliferation capacity was significantly increased in SF-MSCs compared to BM-MSCs. Furthermore, SF-MSCs showed an enhanced expression of transcription factors than BM-MSCs. SF-MSCs exhibited lower differentiation potential toward adipocytes than BM-MSCs. However, the osteoblast differentiation potential was similar in MSCs from both sources. Chondrogenic pellets obtained from SF-MSCs revealed higher levels of chondrocyte-specific markers than those from BM-MSCs. Additionally, glycosaminoglycan (GAG) content was elevated in SF-MSCs related to BM-MSCs. This is, to our knowledge, the first study to establish BM-MSCs and SF-MSCs from the same donor and to demonstrate in vitro differentiation potential into chondrocytes in camels.


2021 ◽  
Vol 22 (8) ◽  
pp. 4011
Author(s):  
Brianna Chen ◽  
Dylan McCuaig-Walton ◽  
Sean Tan ◽  
Andrew P. Montgomery ◽  
Bryan W. Day ◽  
...  

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


2009 ◽  
Vol 1239 ◽  
Author(s):  
Karla Brammer ◽  
Seunghan Oh ◽  
Sungho Jin

AbstractTwo important goals in stem cell research are to control the cell proliferation without differentiation, and also to direct the differentiation into a specific cell lineage when desired. Recent studies indicate that the nanostructures substantially influence the stem cell behavior. It is well known that mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into stromal lineages such as adipocyte, chondrocyte, fibroblast, myocyte, and osteoblast cell types. By examining the cellular behavior of MSCs cultured in vitro on nanostructures, some understanding of the effects that the nanostructures have on the stem cell’s response has been obtained. Here we demonstrate that TiO2 nanotubes produced by anodization on Ti implant surface can regulate human mesenchymal stem cell (hMSC) differentiation towards an osteoblast lineage in the absence of osteogenic inducing factors. Altering the dimensions of nanotubular-shaped titanium oxide surface structures independently allowed either augmented human mesenchymal stem cell (hMSC) adhesion at smaller diameter levels or a specific differentiation of hMSCs into osteoblasts using only the geometric cues. Small (˜30 nm diameter) nanotubes promoted adhesion without noticeable differentiation, while larger (˜70 - 100 nm diameter) nanotubes elicited a dramatic, ˜10 fold stem cell elongation, which induced cytoskeletal stress and selective differentiation into osteoblast-like cells, offering a promising nanotechnology-based route for novel orthopaedics-related hMSC treatments. The fact that a guided and preferential osteogenic differentiation of stem cells can be achieved using substrate nanotopography alone without using potentially toxic, differentiation-inducing chemical agents is significant, which can be useful for future development of novel and enhanced stem cell control and therapeutic implant development.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


2020 ◽  
pp. 019262332091824
Author(s):  
Richard Haworth ◽  
Michaela Sharpe

In 2011, Goldring and colleagues published a review article describing the potential safety issues of novel stem cell-derived treatments. Immunogenicity and immunotoxicity of the administered cell product were considered risks in the light of clinical experience of transplantation. The relative immunogenicity of mesenchymal stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) was being addressed through in vitro and in vivo models. But the question arose as to whether the implanted cells needed to be identical to the recipient in every respect, including epigenetically, to evade immune recognition? If so, this set a high bar which may preclude use of many cells derived from iPSCs which have vestiges of a fetal phenotype and epigenetic memory of their cell of origin. However, for autologous iPSCs, the immunogenicity reduces once the surface antigen expression profile becomes close to that of the parent somatic cells. Therefore, a cell product containing incompletely differentiated cells could be more immunogenic. The properties of the administered cells, the immune privilege of the administration site, and the host immune status influence graft success or failure. In addition, the various approaches available to characterize potential immunogenicity of a cell therapy will be discussed.


Author(s):  
William S. Van Dyke ◽  
Ozan Akkus ◽  
Eric Nauman

The discovery of the multipotent lineage of mesenchymal stem cells has dawned a new age in tissue engineering, where an autologous cell-seeded scaffold can be implanted into different therapeutic sites. Mesenchymal stem cells have been reported to differentiate into numerous anchorage-dependent cell phenotypes, including neurons, adipocytes, myoblasts, chondrocytes, tenocytes, and osteoblasts. A seminal work detailing that mesenchymal stem cells can be directed towards differentiation of different cell types by substrate stiffness alone [1] has led to numerous studies attempting to understand how cells can sense the stiffness of their substrate [2–3] Substrate stiffness has been shown to be an inducer of stem cell differentiation. MSCs on extremely soft substrates (250 Pa), similar to the stiffness of bone marrow, became quiescent but still retained their multipotency [4]. Elastic substrates in the stiffness range of 34 kPa revealed MSCs with osteoblast morphology, and osteocalcin along with other osteoblast markers were expressed [1]. However, osteogenesis has been found to increase on much stiffer (20–80 kPa) [5–6] (400 kPa) [7] as well as much softer substrates (75 Pa) [8]. Overall, cells have increased projected cell area and proliferation on stiffer substrates, leading to higher stress fiber formation. This study seeks to understand if the stiffness of the substrate has any effect on the differentiation potential of osteochondral progenitor cells into bone cells, using an in vitro dual fluorescent mouse model.


Sign in / Sign up

Export Citation Format

Share Document