Study of In Vitro Proliferation Potential of CD133 Positive Cells Derived from Umbilical Cord Blood.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4039-4039
Author(s):  
Ri Zhang ◽  
Wenjin Gao ◽  
Yuanyuan Sun ◽  
Jingcheng Miao ◽  
Xueguang Zhang

Abstract Transforming growth factor-beta 1 (TGF-β1) is known to maintain primitive human hematopoietic stem/progenitor cells with polyfunctional role in a quiescent state and CD133 is a new stem cell antigen that may provide an alternative to CD34 for the selection and expansion of hematopoietic cells for transplantation. To investigate the specific effect of TGF-β1 on proliferation and differentiation of CD133 positive cells derived from umbilical cord blood (UCB) during short-term culture in vitro, CD133 positive cells from 20 fresh UCB samples were selected using Miltenyi Biotec’s CliniMACS separation device and were cultured in IMDM medium with 20% FCS in the presence of a cytokine combination of SCF, IL-6, thrombopoietin, IL-3 and Flt3-ligand for up to 2 weeks and TGF-β1 with low concentration was also added to the mediumon day 4. The proliferative response was assessed at day 7, day 10 and day 14 by evaluating the following parameters: nucleated cells (NC), clonogenic progenitors (CFU-GEMM,CFU-GM and BFU-E), and immunophenotypes (CD133 and CD34). The results showed that efficacious expansion of various hematopoietic stem/progenitor cells was constantly observed during the culture. The fold expansion of NC on day7, day10 and day14 expansion were 33.59,224.26 and 613.48, respectively. The fold expansion of CFU-GEMM, CFU-GM and BFU-E on day 10 were 24.89, 41.62 and 49.28, respectively, obviously higher than that without ex vivo expansion (P<0.05). The expansions of CD133+, CD133+CD34+ and CD34+ subpopulation on day 14 were up to 25.83-fold, 16.16-fold and 60.54-fold, respectively. Furthermore the expansion systems with TGF-β1 showed more CD133+ cells than control at every time points. Our datas suggested that the CD133+ cells from human UCB have great expansion potential for ex-vivo expansion. The low concentration of TGF-β1 may delay over-differentiation of hematopoietic stem/progenitor cells.

Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 6-16 ◽  
Author(s):  
E. V. Sotnezova ◽  
E. R. Andreeva ◽  
A. I. Grigoriev ◽  
L. B. Buravkova

Transplantation of umbilical cord blood cells is currently widely used in modern cell therapy. However, the limited number of hematopoietic stem and progenitor cells (HSPCs) and prolonged time of recovery after the transplantation are significant limitations in the use of cord blood. Ex vivo expansion with various cytokine combinations is one of the most common approaches for increasing the number of HSPCs from one cord blood unit. In addition, there are protocols that enable ex vivo amplification of cord blood cells based on native hematopoietic microenvironmental cues, including stromal components and the tissue-relevant oxygen level. The newest techniques for ex vivo expansion of HSPCs are based on data from the elucidation of the molecular mechanisms governing the hematopoietic niche function. Application of these methods has provided an improvement of several important clinical outcomes. Alternative methods of cord blood transplantation enhancement based on optimization of HPSC homing and engraftment in patient tissues have also been successful. The goal of the present review is to analyze recent methodological approaches to cord blood HSPC ex vivo amplification.


Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 5061-5067 ◽  
Author(s):  
Jennifer Jaroscak ◽  
Kristin Goltry ◽  
Alan Smith ◽  
Barbara Waters-Pick ◽  
Paul L. Martin ◽  
...  

AbstractAllogeneic stem cell transplantation with umbilical cord blood (UCB) cells is limited by the cell dose a single unit provides recipients. Ex vivo expansion is one strategy to increase the number of cells available for transplantation. Aastrom Biosciences developed an automated continuous perfusion culture device for expansion of hematopoietic stem cells (HSCs). Cells are expanded in media supplemented with fetal bovine serum, horse serum, PIXY321, flt-3 ligand, and erythropoietin. We performed a phase 1 trial augmenting conventional UCB transplants with ex vivo–expanded cells. The 28 patients were enrolled on the trial between October 8, 1997 and September 30, 1998. UCB cells were expanded in the device, then administered as a boost to the conventional graft on posttransplantation day 12. While expansion of total cells and colony-forming units (CFUs) occurred in all cases, the magnitude of expansion varied considerably. The median fold increase was 2.4 (range, 1.0-8.5) in nucleated cells, 82 (range, 4.6-266.4) in CFU granulocyte-macrophages, and 0.5 (range, 0.09-2.45) in CD34+ lineage negative (lin–) cells. CD3+ cells did not expand under these conditions. Clinical-scale ex vivo expansion of UCB is feasible, and the administration of ex vivo–expanded cells is well tolerated. Augmentation of UCB transplants with ex vivo–expanded cells did not alter the time to myeloid, erythroid, or platelet engraftment in 21 evaluable patients. Recipients of ex vivo–expanded cells continue to have durable engraftment with a median follow-up of 47 months (range, 41-51 months). A randomized phase 2 study will determine whether augmenting UCB transplants with ex vivo–expanded UCB cells is beneficial.


2021 ◽  
Vol 5 (17) ◽  
pp. 3362-3372
Author(s):  
Yinghui Li ◽  
Wenshan Zhang ◽  
Yu Zhang ◽  
Yahui Ding ◽  
Ming Yang ◽  
...  

Abstract The use of umbilical cord blood transplant has been substantially limited by the finite number of hematopoietic stem and progenitor cells in a single umbilical cord blood unit. Small molecules that not only quantitatively but also qualitatively stimulate enhancement of hematopoietic stem cell (HSC) self-renewal ex vivo should facilitate the clinical use of HSC transplantation and gene therapy. Recent evidence has suggested that the cyclin-dependent kinase inhibitor, p18INK4C (p18), is a critical regulator of mice HSC self-renewal. The role of p18 in human HSCs and the effect of p18 inhibitor on human HSC expansion ex vivo need further studies. Here we report that knockdown of p18 allowed for an increase in long-term colony-forming cells in vitro. We then identified an optimized small molecule inhibitor of p18, 005A, to induce ex vivo expansion of HSCs that was capable of reconstituting human hematopoiesis for at least 4 months in immunocompromised mice, and hence, similarly reconstituted secondary recipients for at least 4 more months, indicating that cells exposed to 005A were still competent in secondary recipients. Mechanistic studies showed that 005A might delay cell division and activate both the Notch signaling pathway and expression of transcription factor HoxB4, leading to enhancement of the self-renewal of long-term engrafting HSCs and the pool of progenitor cells. Taken together, these observations support a role for p18 in human HSC maintenance and that the p18 inhibitor 005A can enhance the self-renewal of long-term HSCs.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Hui Xie ◽  
Li Sun ◽  
Liming Zhang ◽  
Teng Liu ◽  
Li Chen ◽  
...  

Mesenchymal stem cells (MSCs) are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB) to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs) play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.


Sign in / Sign up

Export Citation Format

Share Document