Unique Pattern of Raf-1 Kinase Inhibitory Protein (RKIP) Expression in Multiple Myeloma (MM) Compared to Other Tumor Types: Overexpression of RKIP and a Phosphorylated RKIP Is Common in MM Tumor Cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4852-4852
Author(s):  
Stavroula Baritaki ◽  
Sara Huerta-Yepez ◽  
Kam Yeung ◽  
Manuel Penichet ◽  
Haiming Chen ◽  
...  

Abstract Objective and Rationale Raf-1 kinase inhibitory protein (RKIP) is a modulator of cell signaling and survival that functions as an endogenous inhibitor of multiple kinases, including kinases involved in the Raf/MEK/ERK and NF-κB pathways. RKIP has been identified as a metastasis suppressor gene and an immune surveillance cancer gene, since loss of RKIP protein expression has been associated with tumor progression, metastasis and escape from immune surveillance. Further, RKIP expression has been associated with prognostic significance in many cancers. Recently, we have demonstrated that induction of RKIP expression in tumors with low RKIP levels results in increased tumor cell sensitivity to immuno- or chemo-therapy via inhibition of the above pathways. However, multiple myeloma (MM) cells have been shown to express high RKIP levels compared to other tumors and still remain highly resistant to conventional cytotoxic therapies. These findings were unexpected and thus, it was plausible that the high level of RKIP expression was not functionally active. It has been reported that phosphorylation of RKIP at Ser-153 renders the cells inactive (Rosner et al., 2003, J Biol Chem 278:13061–8). Thus, we examined the expression and the phosphorylation status of the RKIP protein in several multiple myeloma cell lines and tissues and compared them with other cell lines with low RKIP expression. Hypothesis We hypothesized that MM tumor cells express high levels of the inactive phoshorylated RKIP protein which antagonizes the active non-phoshorylated RKIP form in the inhibition of the survival signaling pathways. Experimental Designs and Methods Multiple myeloma (IM-9, RPMI 8226, MM1S, U266 cell lines and fresh bone marrow samples from MM patients), PC-3 prostatic carcinoma and Ramos B-NHL cell lines were examined for total and phosphorylated RKIP expression by IHC and Western Blot analyses. The total RKIP protein was significantly elevated in multiple myeloma cell lines compared to the prostate and B-NHL lines. The predominant RKIP form in multiple myeloma tumors was the phosphorylated RKIP protein with high nuclear localization, as assessed by IHC, while the phosphorylated RKIP levels in the non-myeloma tumors were relatively low. It has been reported that the phosphorylation of RKIP is mediated by protein kinase C (Rosner et al., 2003, J Biol Chem 278:13061–8). Additional studies in multiple myeloma cell lines also revealed high expression of the zeta isoform of PKC (PKCζ), known to phosphorylate and inactivate RKIP. Conclusions and Implications The present findings demonstrate that the aberrant RKIP phosphorylation in multiple myeloma tumors may result in the inhibition of the suppressive effect of RKIP on tumor survival signaling pathways. We postulate that the high expression of RKIP may be due to inhibition of proteasome degradation. The present findings also suggest that screening of RKIP levels and RKIP phosphorylation status in MM may be useful as prognostic factors of tumor cell response to anti-tumor therapies.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2729-2729
Author(s):  
Stavroula Baritaki ◽  
Sara Huerta-Yepez ◽  
Ma de Lourdes Cabera-Muñoz ◽  
Clara Rivera-Pazos ◽  
Kam Yeung ◽  
...  

Abstract Objective and Rationale Raf-1 kinase inhibitor protein (RKIP) is a modulator of cell signaling and survival that functions as an endogenous inhibitor of multiple kinases, including kinases involved in the Raf-1/MEK/ERK and NF-kB pathways. RKIP has been identified as a metastasis suppressor gene and an immune surveillance cancer gene, since loss of RKIP protein expression has been associated with tumor progression, metastasis and escape from immune surveillance. Further, RKIP expression has been associated with prognostic significance in many cancers. Recently, we have demonstrated that induction of RKIP expression in tumors with low RKIP levels results in increased tumor cell sensitivity to immuno- or chemo-therapy via inhibition of the above pathways. However, multiple myeloma (MM) cells have been shown to express high RKIP levels compared to other tumors and still remain highly resistant to conventional cytotoxic therapies. These findings were unexpected and thus, it was plausible that the high level of RKIP expression was not functionally active. It has been reported that phosphorylation of RKIP at Ser-153 renders the cells inactive (Corbit et al., 2003, J Biol Chem 278:13061-8). Thus, we examined the expression and the phosphorylation status of the RKIP protein in several multiple myeloma cell lines and tissues and compared them with other cell lines with low RKIP expression. Hypothesis We hypothesized that MM tumor cells express high levels of the inactive phosphorylated RKIP protein which antagonizes the active non-phosphorylated RKIP form in the inhibition of the survival signaling pathways. Experimental Designs and Methods Multiple myeloma (IM-9, RPMI 8226, MM1S and U266 cell lines and fresh bone marry samples from MM patients), PC-3 prostatic carcinoma and Ramos B-NHL cell lines were examined for total and phosphorylated RKIP expression by IHC and Western Blot analyses. The total RKIP protein was significantly elevated in multiple myeloma cell lines compared to the prostate and B-NHL lines. The predominant RKIP form in patients’ multiple myeloma tumors was the phosphorylated RKIP protein with high nuclear localization, as assessed by IHC, while the phosphorylated RKIP levels in the non-myeloma tumors were relatively low. It has been reported that the phosphorylation of RKIP is mediated by protein kinase C (Corbit et al., 2003, J Biol Chem 278:13061–8). Additional studies in MM cell lines also revealed high expression of the zeta isoform of PKC (PKCζ), known to phosphorylate and inactivate RKIP. Conclusions and Implications The present findings demonstrate that the aberrant RKIP phosphorylation in MM tumors may result in the inhibition of the suppressive effect of RKIP on tumor survival signaling pathways. We postulate that the high expression of RKIP may be due to inhibition of proteasome degradation. The present findings also suggest that screening of RKIP levels and RKIP phosphorylation status in MM may be useful as prognostic factors of tumor cell response to anti-tumor therapies. (Baritaki and Huerta-Yepez contributed equally.)


Blood ◽  
2010 ◽  
Vol 115 (25) ◽  
pp. 5180-5190 ◽  
Author(s):  
Rhona Stein ◽  
Pankaj Gupta ◽  
Xiaochuan Chen ◽  
Thomas M. Cardillo ◽  
Richard R. Furman ◽  
...  

Abstract A humanized IgG4 anti–HLA-DR monoclonal antibody (IMMU-114), engineered to avoid side effects associated with complement activation, was examined for binding and cytotoxicity on leukemia, lymphoma, and multiple myeloma cell lines and chronic lymphocytic leukemia (CLL) patient specimens, followed by evaluation of the effects of IMMU-114 on extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways. HLA-DR was expressed on the majority of these cells at markedly higher levels than CD20, CD22, and CD74. IMMU-114 was toxic to mantle cell lymphoma, CLL, acute lymphoblastic leukemia, hairy cell leukemia, non-Hodgkin lymphoma (including rituximab-resistant), and multiple myeloma cell lines, and also patient CLL cells. IMMU-114 induced disease-free survival in tumor-bearing SCID mice with early-stage disease and in models that are relatively resistant to anti-CD20 monoclonal antibodies. Despite positive staining, acute myelogenous leukemic cells were not killed by IMMU-114. The ability of IMMU-114 to induce activation of ERK and JNK signaling correlated with cytotoxicity and differentiates the mechanism of action of IMMU-114 from monoclonal antibodies against CD20 and CD74. Thus, antigen expression is not sufficient for cytotoxicity; antibody-induced hyperactivation of ERK and JNK mitogen activated protein kinase signaling pathways are also required.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3377-3377 ◽  
Author(s):  
Matthias Peipp ◽  
Michel de Weers ◽  
Thomas Beyer ◽  
Roland Repp ◽  
Paul Parren ◽  
...  

Abstract Although new treatment modalities have recently been added to the standard regimens for multiple myeloma, the clinical outcome for patients with advanced disease is often limited. Monoclonal antibodies are increasingly used for tumor therapy, and may also represent interesting options for multiple myeloma patients. CD38 is one of the most promising target antigens on malignant plasma cells, which are evaluated in preclinical and early clinical studies as targets for antibody therapy. CD38 is a type II transmembrane protein with ectoenzymatic activity, which is involved in calcium mobilization. Human CD38 is predominantly expressed by bone marrow precursor cells and by terminally differentiated plasma cells. Multiple myeloma cells show moderate to high expression levels - making CD38 a potential candidate as target for immunotherapy. A panel of 42 fully human CD38 antibodies was generated by immunizing human Ig transgenic mice. Immunofluorescence studies with CD38 transfected cells demonstrated antigen-specific, high affinity binding, and cross-blocking experiments revealed four distinct epitope groups. Seven antibodies, representing each of the four groups, were selected for further analyses. ADCC and CDC activity against CD38-positive myeloma cell lines (AMO-1 and JK6), and against freshly-isolated primary multiple myeloma cells was investigated. Human whole blood served as effector source, which was then fractionated into plasma (containing human complement), mononuclear (MNC) or granulocytic (PMN) effector cells. All antibodies mediated concentration-dependent killing of both multiple myeloma cell lines - using human mononuclear cells as effector source. Also complement-dependent killing of freshly isolated myeloma cells was observed. However, none of the antibodies recruited PMN for tumor cell lysis. Importantly, CD38 antibodies also killed freshly isolated tumor cells from a rare patient with a CD38/138- positive plasma cell leukemia, which was chemotherapy- refractory at the time of analysis. Furthermore, CD38 antibodies effectively prevented outgrowth of CD38-positive tumor cells in SCID mouse xenograft models. Antibody 005 was significantly more effective in these assays compared to the remaining panel of CD38 antibodies. In conclusion, CD38 antibodies efficiently mediated killing of multiple myeloma cell lines as well as freshly isolated tumor cells and prevented tumor outgrowth in xenografted SCID mice. Antibody 005 was superior in mediating CDC and ADCC via MNC - particularly at low antibody concentrations.


2000 ◽  
Vol 111 (4) ◽  
pp. 1118-1121 ◽  
Author(s):  
A. Bellahcene ◽  
I. Van Riet ◽  
C. de Greef ◽  
N. Antoine ◽  
M. F. Young ◽  
...  

2008 ◽  
Vol 49 (7) ◽  
pp. 1374-1383 ◽  
Author(s):  
Antonino Neri ◽  
Sandra Marmiroli ◽  
Pierfrancesco Tassone ◽  
Luigia Lombardi ◽  
Lucia Nobili ◽  
...  

2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 1039-1046 ◽  
Author(s):  
G. Teoh ◽  
Y.-T. Tai ◽  
M. Urashima ◽  
S. Shirahama ◽  
M. Matsuzaki ◽  
...  

It has been reported that the activation of multiple myeloma (MM) cells by CD40 induces proliferation, growth arrest, and apoptosis. To determine whether the biologic sequelae of CD40 activation in MM cells depends on p53 function, we identified temperature-sensitive p53 mutations in the RPMI 8226 (tsp53E285K) and the HS Sultan (tsp53Y163H) MM cell lines. These cells were then used as a model system of inducible wtp53-like function because wild-type-like p53 is induced at permissive (30°C) but not at restrictive (37°C) temperatures. Using p21-luciferase reporter assays, we confirmed that CD40 induces p53 transactivation in RPMI 8226 and HS Sultan cells cultured under permissive, but not restrictive, conditions. Furthermore, CD40 activation of these MM cells under permissive, but not restrictive, temperatures increased the expression of p53 and p21 mRNA and protein. Importantly, CD40 activation induced the proliferation of RPMI 8226 and HS Sultan cells at restrictive temperatures and growth arrest and increased subG1 phase cells at permissive temperatures. These data confirmed that CD40 activation might have distinct biologic sequelae in MM cells, depending on their p53 status.


Sign in / Sign up

Export Citation Format

Share Document