Disruption of T Cell Suppression in Chronic Lymphocytic Leukemia by CD200 Blockade.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2072-2072
Author(s):  
Christian P Pallasch ◽  
Susanne Ulbrich ◽  
Reinhild Brinker ◽  
Robert A Uger ◽  
Michael Hallek ◽  
...  

Abstract Suppression of patients’ T-cells is a key event in CLL pathogenesis and was demonstrated to be mediated by direct cell-cell contact of malignant CLL cells with T-cells. CD200 plays a critical role in regulating the immune system and has been shown to be up-regulated on the surface of different tumors including CLL. In this study we addressed the effects of CD200 over-expression on CLL cells on autologous T cells in a mixed lymphocyte reaction system. We used native and CD40 ligand (CD40L)- stimulated CLL cells as antigen-presenting cells (APCs) to expand autologous T cells of 14 patients. T-cell proliferation was analyzed over 3 weeks of in vitro culture. A functional anti- CD200 antibody (1B9) was added to reveal CD200-mediated immunosuppression in the autologous system. Expansion of patient T-cells was assessed by flow cytometry including intracellular staining of FOXP3. Specificity towards CLL-specific antigens was monitored applying fibromodulin derived peptides for detection of specific T-cells by ELISPOT analysis. T-cell proliferation over 3 weeks of in vitro culture was significantly enhanced compared to control cells when using CD40L-stimulated APCs and an anti-CD200 antibody (p=0.0004). CD200 blockade was further shown to stimulate antigen-specific T-cell responses towards the F2 and F4 peptides of the CLL-associated antigen fibromodulin (p=0.04). Finally, the number of CD4+/CD25high/FOXP3+ T cells (Treg) was significantly decreased in CD200 treated mixed lymphocyte reaction (p=0.04). In summary, CD200 blockade may provide therapeutic benefits in CLL by enhancing T-cell expansion, augmenting an antigen-specific T cell response with suppression of regulatory T cells. CD200 seems to be an important immunosuppressive molecule in CLL: by CD200 blockade immune suppression can be overcome by altering tolerance to tumor antigens and deregulation of regulatory T cells. This combination of an immune induction paralleled by a disruption of immunosuppressive factors makes anti-CD200 mAb a powerful tool for future treatment of CLL, possibly in combination with other B cell cytotoxic or immunostimulatory approaches.

2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Binder ◽  
Felix Sellberg ◽  
Filip Cvetkovski ◽  
Erik Berglund ◽  
David Berglund

Antibodies are commonly used in organ transplant induction therapy and to treat autoimmune disorders. The effects of some biologics on the human immune system remain incompletely characterized and a deeper understanding of their mechanisms of action may provide useful insights for their clinical application. The goal of this study was to contrast the mechanistic properties of siplizumab with Alemtuzumab and rabbit Anti-Thymocyte Globulin (rATG). Mechanistic assay systems investigating antibody-dependent cell-mediated cytotoxicity, antibody-dependent cell phagocytosis and complement-dependent cytotoxicity were used to characterize siplizumab. Further, functional effects of siplizumab, Alemtuzumab, and rATG were investigated in allogeneic mixed lymphocyte reaction. Changes in T cell activation, T cell proliferation and frequency of naïve T cells, memory T cells and regulatory T cells induced by siplizumab, Alemtuzumab and rATG in allogeneic mixed lymphocyte reaction were assessed via flow cytometry. Siplizumab depleted T cells, decreased T cell activation, inhibited T cell proliferation and enriched naïve and bona fide regulatory T cells. Neither Alemtuzumab nor rATG induced the same combination of functional effects. The results presented in this study should be used for further in vitro and in vivo investigations that guide the clinical use of immune modulatory biologics.


2021 ◽  
Author(s):  
◽  
Aras Toker

<p>Glatiramer acetate (GA) is approved for the treatment of relapsing-remitting multiple sclerosis (MS), and can suppress experimental autoimmune encephalomyelitis (EAE), a murine model of human MS. GA treatment is associated with the induction of anti-inflammatory TH2 responses and with the antigen specific expansion of regulatory T cells that counteract or inhibit pathogenic events in MS and EAE. These T cell mediated mechanisms of protection are considered to be a result of modulation of antigen presenting cells (APCs) by GA, rather than direct effects on T cells. However, it is unknown if GA preferentially targets a specific APC subset or can act through multiple APCs in vivo. In addition, GA-modulated innate cells may also exhibit direct antigen non-specific suppression of autoreactive cells. One objective of this study was to identify the in vivo target cell population of GA and to assess the potential of the target cells to antigen non-specifically suppress immune responses. Fluorophor-labelled GA bound to monocytes after intravenous injections, suggesting that monocytes may be the primary target of GA in vivo. In addition, intravenous GA treatment enhanced the intrinsic ability of monocytes to suppress T cell proliferation, both in vitro and in vivo. The findings of this study therefore suggest that GA-induced monocytes may contribute to GA therapy through direct mechanisms of antigen non-specific T cell immunosuppression. A further objective of this work was to investigate the potential of an in vivo drug targeting approach. This approach was hypothesised to increase the uptake of GA by the target cells and substantially improve GA treatment through antigen specific mechanisms such as induction of TH2 or regulatory T cells. Targeting antigens to professional APCs with an anti-MHC class II antibody resulted in significantly enhanced T cell proliferation in vitro. However, no EAE suppression occurred when GA was targeted to MHC class II in vivo. In addition, targeting GA specifically to monocytes also failed to suppress EAE. These findings suggest that GA treatment may selectively modulate monocytes to enhance their ability to inhibit autoreactive T cells, which could be part of the mechanism by which GA ameliorates MS. Targeting GA to a specific cell type may not be a powerful approach to improve treatment, because increased proliferation of GA specific T cells is not sufficient for disease suppression, and conjugation to antibodies may functionally reduce GA to a mere antigen devoid of immunomodulatory capacity.</p>


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5138-5138
Author(s):  
Dolores Mahmud ◽  
Sandeep Chunduri ◽  
Javaneh Abbasian ◽  
John Maciejewski ◽  
Ronak Iqbal ◽  
...  

Abstract Transplantation of HLA-mismatched nucleated cells from cord blood (CB) has reduced risks of graft rejection and severe acute graft-versus-host disease. In this study we analyzed the in-vitro alloantigen presenting capacity of cord blood nucleated cells. CB mononuclear cells (MNCs) or immunomagnetically-selected CD34+ cells, or CD14+ monocytes, were irradiated and tested as stimulators of allogeneic blood T cells in primary (stimulator:responder ratio = 1:1) or secondary (stimulator:responder ratio = 1:2) mixed leukocyte culture (MLC), or in cytotoxic T-lymphocytes (CTL) assays. CB-MNCs failed to induce allogeneic T cell proliferation in 6-days primary MLC, whereas CD34+ or CD14+ cells stimulated brisk T cell responses. A suppressive effect of CB-MNCs was ruled out since CD3+ cell-depletion of CB-MNCs did not restore CB immunogenicity and the addition of increasing doses of CB-MNCs did not inhibit T cell alloreactivity to CD34+ cells. Despite allogeneic T cells were unresponsive to CB-MNCs after primary and secondary MLC, T cell anergy was ruled out since T cells that were unresponsive after primary MLC proliferated potently in secondary MLC stimulated with CB CD34+ cells, and even more with CB monocyte-derived dendritic cells (Mo-DC) generated in-vitro with GM-CSF and IL-4. Interestingly, after co-culture with irradiated allogeneic T cells for 6 days, CB-MNCs showed a greater proportion of CD86+ cells and elicited allo- T cell proliferation. In addition, allo-CTL activity was induced by CB-MNCs only after restimulating effector cells for 3–4 weeks (26±7% lysis of antigen-specific PHA-blast at 50:1 E:T ratio), and was comparable to CTL activity induced after 1 week by Mo-DC generated from the same CB. When T cell effectors were stimulated by combining two incompatible cord blood MNCs mixed together, CTL activity was then detected after 4 weeks against both of them regardless of the CB:CB cell ratio. These results show an impaired allo-APC activity of CB-MNCs, without suppressive or tolerogenic activity. These findings might partially explain the initial engraftment of combined HLA mismatched CB grafts in vivo, however they also suggest that a delayed T cell response may occur due to CB-derived APCs activating CTLs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1008-1008
Author(s):  
Karnail Singh ◽  
Natalia Kozyr ◽  
Linda Stempora ◽  
Allan D Kirk ◽  
Christian P Larsen ◽  
...  

Abstract Abstract 1008 Regulatory T cells (Tregs) have been shown to be potent inhibitors of autoimmunity, and to be capable of suppressing alloimmune responses that occur during both allograft rejection and graft-versus host disease. However, they have yet to gain widespread use clinically, due in part to the fact that it remains extremely costly and difficult to produce them in sufficient numbers and with sufficient suppressive capacity to significantly impact the alloimmune response. Here we have used our established non-human primate model to demonstrate that significant Treg expansion (up to 600-fold in 21 days) can be maintained, and suppressive capacity enhanced by exposing Treg cultures to a short burst of sirolimus at the end of the culture period. Using a highly sensitive and specific in vitro CFSE-MLR assay we show that Tregs significantly inhibit allo-proliferation of multiple T cell subpopulations including both CD4+ and CD8+ T cells (3.2 and 2.7-fold inhibition of proliferation, respectively), as well as their CD28+CD95+ and CD28-CD95+ subpopulations (2.2 and 2.1 and 1.9 and 2.7-fold inhibition of CD4+ and CD8+ subpopulation proliferation, respectively). Tregs were able to combine in vitro with the newly FDA-approved CTLA4-Ig analog belatacept to enhance the inhibition of alloproliferation that occurred with either agent alone (4.8-fold inhibition of CD8 T cell proliferation with Tregs + belatacept, compared to 3.0-fold or 1.9-fold inhibition of CD8 T cell proliferation with Tregs or belatacept alone, respectively). Importantly, we have found that the suppressive activity of ex-vivo expanded Tregs could be further enhanced by pulsing with sirolimus. Thus, while long-term culture of Tregs in the presence of sirolimus (1–1000 nM) profoundly inhibited Treg expansion (50–800 fold inhibition of expansion when cultured in the presence of 1–1000 nM sirolimus), a 48 hour pulse of sirolimus (100 nM) on days 20–21 of culture completely preserved Treg yields while doubling their suppressive function against CD8 proliferation when compared to unpulsed Tregs, p<0.01) A mechanistic evaluation of the increase potency observed with sirolimus pulsed Tregs (SPTs) has revealed several key differences that distinguish these cells from the less-potent unpulsed Tregs: SPTs were found to undergo fewer rounds of proliferation in an MLR when compared with unpulsed Tregs (14% proliferation in SPTs versus 37% proliferation in un-pulsed Tregs, p= 0.015), suggesting that the suppressive capability of Tregs may be inversely related to their proliferative capacity. SPTs were also shown to have significantly increased expression of CD25 (p=0.04) and total CTLA4 (p= 0.009) compared to unpulsed Tregs, implicating signaling through both of these molecules in their enhanced function. Our results suggest that the creation of SPTs may provide a novel avenue by which to achieve enhanced Treg-based suppression of alloimmunity, in a manner that is amenable to large-scale ex-vivo expansion and to combinatorial therapy with novel, costimulation-blockade-based immunosuppression strategies. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 201 (11) ◽  
pp. 1793-1803 ◽  
Author(s):  
Claudia R. Ruprecht ◽  
Marco Gattorno ◽  
Francesca Ferlito ◽  
Andrea Gregorio ◽  
Alberto Martini ◽  
...  

A better understanding of the role of CD4+CD25+ regulatory T cells in disease pathogenesis should follow from the discovery of reliable markers capable of discriminating regulatory from activated T cells. We report that the CD4+CD25+ population in synovial fluid of juvenile idiopathic arthritis (JIA) patients comprises both regulatory and effector T cells that can be distinguished by expression of CD27. CD4+CD25+CD27+ cells expressed high amounts of FoxP3 (43% of them being FoxP3+), did not produce interleukin (IL)-2, interferon-γ, or tumor necrosis factor, and suppressed T cell proliferation in vitro, being, on a per cell basis, fourfold more potent than the corresponding peripheral blood population. In contrast, CD4+CD25+CD27− cells expressed low amounts of FoxP3, produced effector cytokines and did not suppress T cell proliferation. After in vitro activation and expansion, regulatory but not conventional T cells maintained high expression of CD27. IL-7 and IL-15 were found to be present in synovial fluid of JIA patients and, when added in vitro, abrogated the suppressive activity of regulatory T cells. Together, these results demonstrate that, when used in conjunction with CD25, CD27 is a useful marker to distinguish regulatory from effector T cells in inflamed tissues and suggest that at these sites IL-7 and IL-15 may interfere with regulatory T cell function.


2007 ◽  
Vol 204 (8) ◽  
pp. 1803-1812 ◽  
Author(s):  
Daisuke Kamimura ◽  
Michael J. Bevan

An optimal CD8+ T cell response requires signals from the T cell receptor (TCR), co-stimulatory molecules, and cytokines. In most cases, the relative contribution of these signals to CD8+ T cell proliferation, accumulation, effector function, and differentiation to memory is unknown. Recent work (Boyman, O., M. Kovar, M.P. Rubinstein, C.D. Surh, and J. Sprent. 2006. Science. 311:1924–1927; Kamimura, D., Y. Sawa, M. Sato, E. Agung, T. Hirano, and M. Murakami. 2006. J. Immunol. 177:306–314) has shown that anti–interleukin (IL) 2 monoclonal antibodies that are neutralizing in vitro enhance the potency of IL-2 in vivo. We investigated the role of IL-2 signals in driving CD8+ T cell proliferation in the absence of TCR stimulation by foreign antigen. IL-2 signals induced rapid activation of signal transducer and activator of transcription 5 in all CD8+ T cells, both naive and memory phenotype, and promoted the differentiation of naive CD8+ T cells into effector cells. IL-2–anti–IL-2 complexes induced proliferation of naive CD8+ T cells in an environment with limited access to self–major histocompatibility complex (MHC) and when competition for self-MHC ligands was severe. After transfer into wild-type animals, IL-2–activated CD8+ T cells attained and maintained a central memory phenotype and protected against lethal bacterial infection. IL-2–anti–IL-2 complex–driven memory-like CD8+ T cells had incomplete cellular fitness compared with antigen-driven memory cells regarding homeostatic turnover and cytokine production. These results suggest that intense IL-2 signals, with limited contribution from the TCR, program the differentiation of protective memory-like CD8+ cells but are insufficient to guarantee overall cellular fitness.


2021 ◽  
Author(s):  
◽  
Aras Toker

<p>Glatiramer acetate (GA) is approved for the treatment of relapsing-remitting multiple sclerosis (MS), and can suppress experimental autoimmune encephalomyelitis (EAE), a murine model of human MS. GA treatment is associated with the induction of anti-inflammatory TH2 responses and with the antigen specific expansion of regulatory T cells that counteract or inhibit pathogenic events in MS and EAE. These T cell mediated mechanisms of protection are considered to be a result of modulation of antigen presenting cells (APCs) by GA, rather than direct effects on T cells. However, it is unknown if GA preferentially targets a specific APC subset or can act through multiple APCs in vivo. In addition, GA-modulated innate cells may also exhibit direct antigen non-specific suppression of autoreactive cells. One objective of this study was to identify the in vivo target cell population of GA and to assess the potential of the target cells to antigen non-specifically suppress immune responses. Fluorophor-labelled GA bound to monocytes after intravenous injections, suggesting that monocytes may be the primary target of GA in vivo. In addition, intravenous GA treatment enhanced the intrinsic ability of monocytes to suppress T cell proliferation, both in vitro and in vivo. The findings of this study therefore suggest that GA-induced monocytes may contribute to GA therapy through direct mechanisms of antigen non-specific T cell immunosuppression. A further objective of this work was to investigate the potential of an in vivo drug targeting approach. This approach was hypothesised to increase the uptake of GA by the target cells and substantially improve GA treatment through antigen specific mechanisms such as induction of TH2 or regulatory T cells. Targeting antigens to professional APCs with an anti-MHC class II antibody resulted in significantly enhanced T cell proliferation in vitro. However, no EAE suppression occurred when GA was targeted to MHC class II in vivo. In addition, targeting GA specifically to monocytes also failed to suppress EAE. These findings suggest that GA treatment may selectively modulate monocytes to enhance their ability to inhibit autoreactive T cells, which could be part of the mechanism by which GA ameliorates MS. Targeting GA to a specific cell type may not be a powerful approach to improve treatment, because increased proliferation of GA specific T cells is not sufficient for disease suppression, and conjugation to antibodies may functionally reduce GA to a mere antigen devoid of immunomodulatory capacity.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongda Wang ◽  
Yiming Zhao ◽  
Bingbing Ren ◽  
Yafei Qin ◽  
Guangming Li ◽  
...  

Abstract Background Autoimmune hepatitis (AIH) is a T cell-mediated immune disease that activates abnormally against hepatic antigens. We have previously reported that endometrial regenerative cells (ERCs) were a novel source of adult stem cells, which exhibiting with powerful immunomodulatory effects. Galectin-9 (Gal-9) is expressed in ERCs and plays an important role in regulating T cell response. This study aims to explore the role of ERCs in attenuation of AIH and to determine the potential mechanism of Gal-9 in ERC-mediated immune regulation. Methods ERCs were obtained from menstrual blood of healthy female volunteers. In vitro, ERCs were transfected with lentivirus vectors carrying LGALS9 gene and encoding green fluoresce protein (GFP-Gal-9-LVs) at a MOI 50, Gal-9 expression in ERCs was detected by ELISA and Q-PCR. CD4+ T cells isolated from C57BL/6 mouse spleen were co-cultured with ERCs. The proliferation of CD4+ T cells was detected by CCK-8 kit and the level of Lck/zap-70/LAT protein was measured by western blot. Furthermore, AIH was induced by ConA in C57BL/6 mice which were randomly assigned to untreated, unmodified ERC-treated and Gal-9 high-expressing ERC-treated groups. Histopathological score, liver function, CD4+/CD8+ cell infiltration in liver tissues, the proportion of immune cells in the spleen and liver, and ERC tracking were performed accordingly to assess the progression degree of AIH. Results After transfecting with GFP-Gal-9-LVs, Gal-9 expression in ERCs was significantly increased. Additionally, Gal-9 high-expressing ERCs effectively inhibited CD4+ T cell proliferation and downregulated CD4+ T cell active related proteins p-Lck/p-ZAP70/p-LAT in vitro. Furthermore, treatment with Gal-9 high-expressing ERCs restored liver function, ameliorated liver pathological damage, inhibit CD4+ and CD8+ T cell proliferation and suppress Th1 and Th17 cell response in the hepatitis mice. In addition, Gal-9 high-expressing ERCs further markedly enhanced the level of IL-10 but reduced the levels of IFN-γ, TNF-α, and IL-4 in mouse sera and liver. Cell tracking also showed that ERCs could migrate to the damaged liver organs. Conclusions The results suggested that Gal-9 was an essential modulator, which was required by ERCs in regulating T cell response and attenuating ConA-induced experimental hepatitis. And also, it provides a novel idea for the clinical treatment of AIH.


2000 ◽  
Vol 74 (12) ◽  
pp. 5460-5469 ◽  
Author(s):  
SangKon Oh ◽  
J. Michael McCaffery ◽  
Maryna C. Eichelberger

ABSTRACT During the acute phase of infection with influenza A virus, the degree of lymphopenia correlates with severity of disease. Factors that contribute to T-cell activation during influenza virus infection may contribute to this observation. Since the immune response is initiated when dendritic cells (DC) interact with T cells, we have established an in vitro system to examine the effects of influenza virus infection on DC function. Our results show that allogeneic T-cell proliferation was dependent on the dose of A/PR/8/34 used to infect DC, with enhanced responses at low, but not high, multiplicities of infection. The lack of enhancement at high virus doses was not primarily due to the increased rate of DC apoptosis, but required viral replication and neuraminidase (NA) activity. Clusters that formed between DC or between DC and T cells were also dependent on the viral dose. This change in cellular interaction may oppose T-cell proliferation in response to DC infected with high doses of PR8, since the increased contact between DC resulted in the exclusion of T cells. The enhanced alloreactive T-cell response was restored by neutralization of transforming growth factor β1 (TGF-β1). It is likely that NA present on viral particles released from DC infected with high doses of PR8 activates TGF-β1. Future studies will determine the mechanism by which TGF-β1 modifies the in vitro T-cell response and address the contribution of this cytokine to the lymphopenia observed in severe disease.


2005 ◽  
Vol 115 (1) ◽  
pp. 3-9 ◽  
Author(s):  
K EARLE ◽  
Q TANG ◽  
X ZHOU ◽  
W LIU ◽  
S ZHU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document